Sumitomo Drive Technologies

Sensorless Vector Inverter HF-520 series

HF-520 series: The user friendly Sensorless Vector **Control Drive!**

■ Powerful Inverter suitable for SUMITOMO Gearmotor

Sensorless vector control allows for high starting torque (150% or more). Deceleration time can be shortened by the overexcitation operation of braking

This inverter is ideal for SUMITOMO Gearmotor operation.

Easy Parameter Setting for the Application

The most suitable parameters are pre-set automatically by choosing the type of applications such as conveyor, lifter and etc.

This will help to reduce testing and commissioning time.

■ • Easy Parameter Management

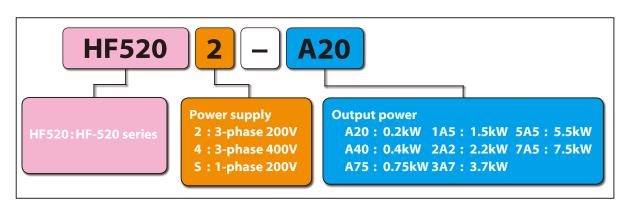
A copy of the parameter values settings by the LED operator can be used to transfer to other inverters.

Parameter setting file can be managed using Engineering Tool for PC.

■ • Long Lifetime Inverter

The capacitor and cooling fan are designed for long lifetime operation (10 years). Maintenance time can be checked by LED operator.

Corresponds to major standards of the world


< Table of Contents >

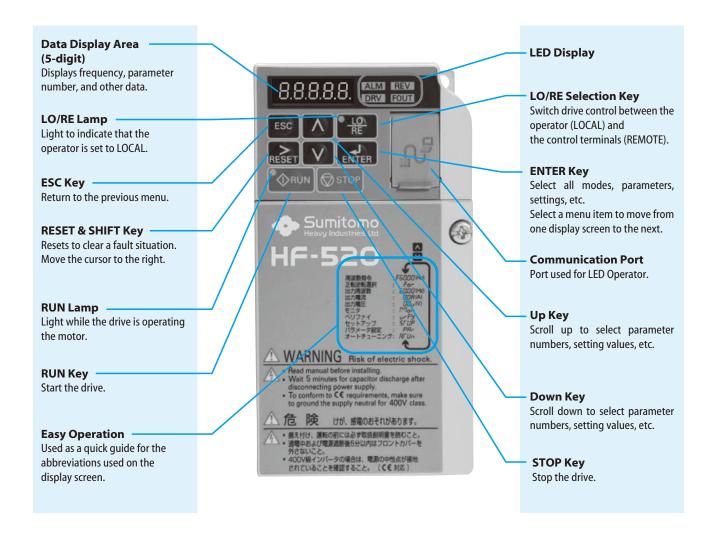
Explanation of Functions	1	Terminal Functions	7
Operation	3	Applied Connection Diagram	8
Standard and Common Specifications	5	Table of Parameters	9
Standerd Connection Diagram	6	Outline Drawing	13

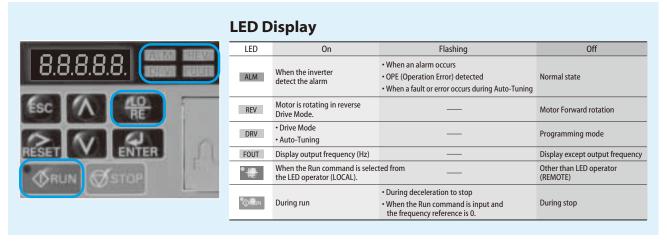
Power Range

Voltage Class	Applicable Motor (kW)								
(Input/Rated output)	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	
3-phase 200V/3-phase 200V									
3-phase 400V/3-phase 400V									
1-phase 200V/3-phase 200V									

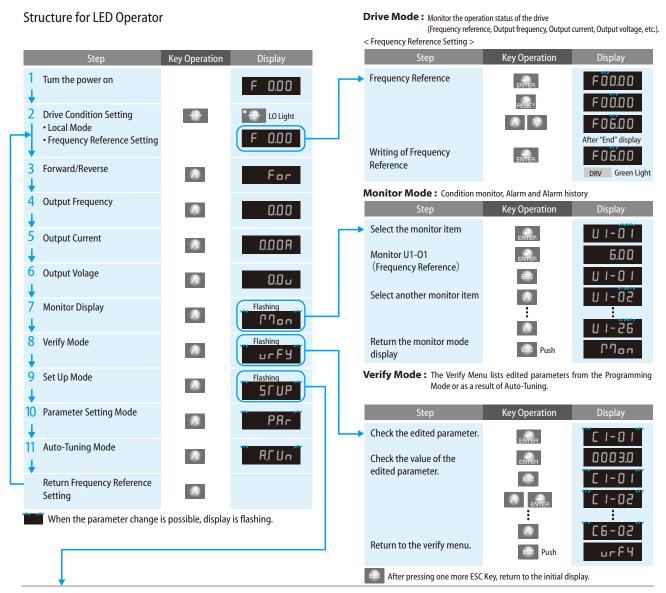
Model No.

■ Gearmotor Product Lineup





Bevel BUDDYBOX® and Helical BUDDYBOX® which can be driven by HF-520 too.


Accessories and Options	14	Notes to Inverter Users	23
Peripheral Equipment	15	Selection Guide	25
External Options	16	Warranty	26
Motor Operating Characteristics	22		

Operation

■ LED Operator Screen Structure

Setup Mode

The application Presets function is applicable.

The parameters are changed to the optimum value for each application.

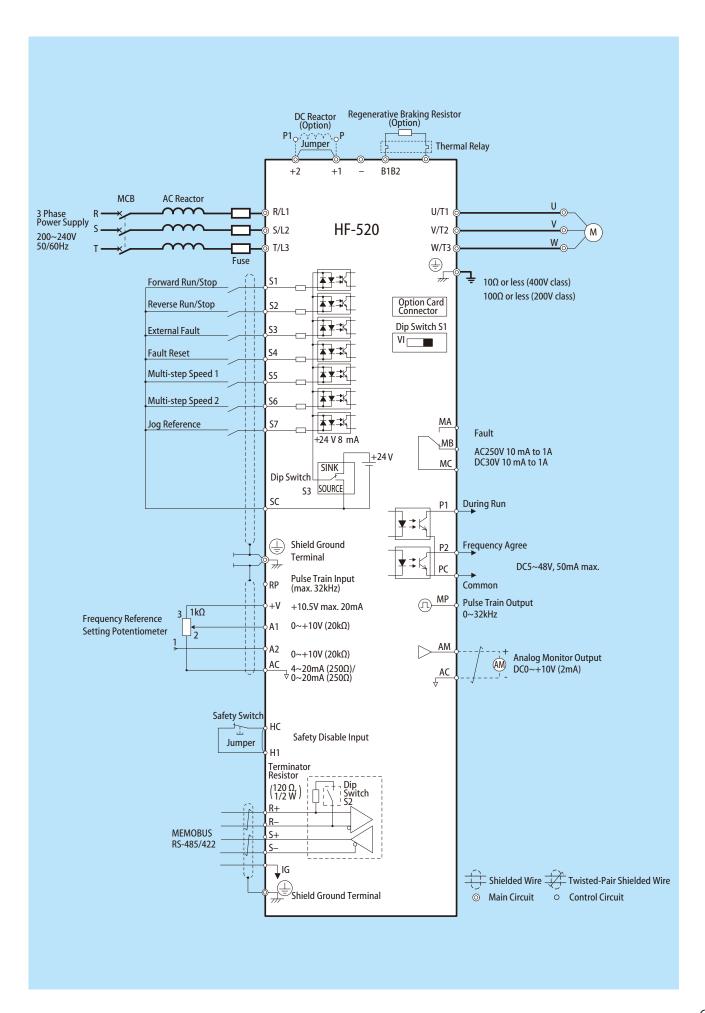
■ Conveyor Application

No.	Parameter Name	Default Setting
A1-02	Control Method Selection	0: V/f Control
C1-01	Acceleration Time 1	3.0 s
C1-02	Deceleration Time 1	3.0 s
C6-01	Drive Duty Selection (ND/HD)	0 : Heavy Duty (HD)
L3-04	Stall Prevention Selection during Deceleration	1 : Enabled

Standard and Common Specifications

■ Standard Specifications

	Item					Specifi	Specifications					
	Input Voltage Class	5	3-phase 200V / 3-phase 400V / 1-phase 200V					200V				
	Applicable Motor (k)	N)	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5		
	Input Voltage Class Model No. HF520 □ - □ □ □											
	3-phase 200V							3A7	5A5	7A5		
	3-phase 400V 1-phase 200V	HF5204- HF520S-	A20	A40	A75	1A5	2A2	-	-	-		
		200V class	0.6	1.1	1.9	3.0	4.2	6.7	9.5	12.6		
Rating	Rated Output Capacity (kVA)	400V class	0.9	1.4	2.6	3.7	4.2	7.0	11.3	13.7		
Rati		3-phase 200V input	1.6	3.0	5.0	8.0	11.0	17.5	25.0	33.0		
	Rated Output Capacity (A)	3-phase 400V input	1.2	1.8	3.4	4.8	5.5	9.2	14.8	18.0		
		1-phase 200V input	1.6	3.0	5.0	8.0	11.0	-	-	-		
	Output Volta	ge	3-phase 200V~240V (200V class) / 3-phase 380~480V (400V class)									
	Over Load Current	Rating				150% 1	minute		V (400V class)			
		3-phase 200V				3-phase 200V~	240V 50/60Hz					
Power Supply	Voltage Frequency	3-phase 400V				3-phase 380V~	480V 50/60Hz					
wer		1-phase 200V			-	1-phase 200V~	240V 50/60Hz					
Po	Allowable Fluctu	ation			\	oltage -15~+10	%, Frequency±5	%				
	Protective Method				Enclosed	Type IP20			Enclosed Type (NEMA Type1)			
		3-phase 200V	Self-c	ooling			Cooli	ng fan				
	Protective Method Cooling Method	3-phase 400V		Self-cooling	•			Cooling fan				
		1-phase 200V		Self-cooling		Cooli	ng fan		-			


■ Common Specifications

	Item	Specifications
	Control Method	Sensorless Vector Control , V/f Control
	Frequency Control Range	0.01 to 400 Hz
	Trequency control range	Digital input: within ±0.01% of the max output frequency (-10 to +50 °C)
	Frequency Accuracy	Analog input: within $\pm 0.5\%$ of the max output frequency (25% C)
		Digital inputs: 0.01 Hz
	Frequency Setting Resolution	J F
	Output Frequency Calculation	Analog inputs: 1/1000 of maximum output frequency
stics	Resolution	1/220 x Maximum output frequency (E1-04)
Control Characteristics	Frequency Setting Signal	Main frequency reference: 0 to +10 Vdc (20 kΩ), 4 to 20 mA (250 Ω), 0 to 20 mA (250 Ω) Main speed reference: Pulse Train Input (max 32 kHz)
harë	Torque Limit	Sensorless Vector Control only. Adjustable in 4 quadrants.
	Accel/Decel Time	0.00 to 6000.0 s (allows four separate settings for accel and decel)
Contro	Braking Torque	Instantaneous Average Decel Torque Note: 1: 0.1/0.2 kW: over 150%, 0.4/0.75 kW: over 100%, 1.5 kW: over 50%, 2.2 kW and above: over 20% Continuous Regen Torque: 20%, 125% with a Braking Resistor Unit Note: (10% ED) 10 s with an internal braking resistor.
	V/f Characteristics	Preset V/f patterns and user-set program available.
	Functions	Momentary Power Loss Ride-Thru, Speed Search Over/Undertorque Detection, Torque Limit, Multi-Step Speed (17 steps max) Accel/Decel Time Switch, S-Curve Accel/Decel, 2-Wire/3-Wire Sequence, Rotational Auto-Tuning Stationary Auto-Tuning of Line- to-Line Resistance, Dwell, Cooling Fan ON/OFF, Slip Compensation Torque Compensation, Jump Frequencies (reference dead band) Frequency Reference Upper/Lower Limit, DC Injection Braking (start and stop), High Slip Braking PID Control (with Sleep Function), Energy Saving, MEMOBUS/Modbus (RS-485/RS-422) Fault Reset, Parameter Copy, Fault Restart, Removable Terminals with Parameter Backup Function
	Carrier Frequency	5 kHz (user-adjustable from 2 to 15 kHz)
	Motor Protection	Motor overheat protection via output current sensor
	Overcurrent Protection	Drives stops when output exceeds 200% of the rated current
	Overload Protection	A stop command will be entered after operating at 150% for 60 s Note:3
	O	200 V Class: Stops when DC bus voltage exceeds approx. 410 V
ons	Overvoltage Specification	400 V Class: Stops when DC bus voltage exceeds approx. 820 V
Protection Functions	Low Voltage Protection	Drive stops when DC bus voltage falls below the levels indicated: 190 V (3-phase 200 V), 160 V (single-phase 200 V) 380 V (3-phase 400 V), 350 V (3-phase 380 V)
otectio	Momentary Power Loss Ride-Thru	3 selections available: Ride-Thru disabled (stops after 15 ms), time base of 0.5 s, and continue running as long as the drive control board is powered up.
P.	Heatsink Overheat Protection	Protected by thermistor
	Stall Prevention	Stall prevention is available during acceleration, deceleration, and duringrun. Separate settings for each type of stall prevention determine the current level at which stall prevention is triggered
	Ground Fault Protection	Electronic circuit protection
	DC Bus Charge LED	Remains lit until DC bus voltage falls below 50 V
	Storage/Installation Area	Indoors
ent	Ambient Temperature	IP20/NEMA Type 1 enclosure: -10 °C to +40 °C IP20/IP00 Open-Chassis enclosure: -10 °C to +50 °C
l iii	Storage Temperature	-20 to +60 °C allowed for short-term transport of the product
Environment	Humidity	95% RH or less with no condensation
En	Altitude	Up to 1000 meters without derating; up to 3000 meters with output current and voltage derating.
	Shock, Impact	10 to 20 Hz: 9.8 m/s2 20 to 55 Hz: 5.9 m/s2

Note: 1. Instantaneous average deceleration torque refers to the torque required to decelerate the motor (uncoupled from the load) from the rated motor speed down to zero in the shortest time.

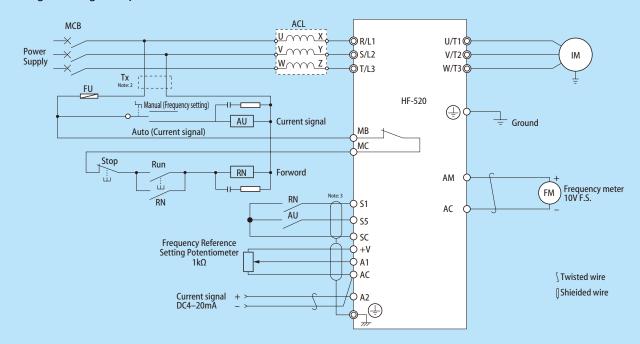
^{2.} Ensure that Stall Prevention Selection during Deceleration is disabled (L3-04 = 0) or set to 3 when using a regenerative braking resistor.

 $^{3. \} Overload\ protection\ may\ be\ triggered\ when\ operating\ with\ 150\%\ of\ the\ rated\ output\ current\ if\ the\ output\ frequency\ is\ less\ than\ 6\ Hz.$

■ Main Terminals

No.	Terminal Name	Function		
R/L1		Connects line power to the drive.		
S/L2	Main circuit power supply input	Drives with single-phase 200 V input power use terminals R/L1 and S/L2 only.		
T/L3		T/L3 must not be used.		
U/T1				
V/T2	Drive output	Connects to the motor.		
W/T3				
B1	Regenerative braking resistor	Available for connecting a regenerative braking resistor.		
B2	Regenerative braking resistor			
+1	DC reactor connection	These terminals are shorted at shipment.		
+2	DC reactor connection	Remove the shorting bar between +1 and +2 when connecting a DC reactor to this terminal.		
+1	DC naver averaly in a st	For annual in a DC annual number		
-	DC power supply input	For connecting a DC power supply.		
Grounding Terminal 200V Class 100Ω or less 400V Class 10Ω or less		200V Class 100Ω or less		

■ Input Terminals


Туре	No.	Terminal Name (Function)	Function (Signal Level)		
	S1	Multi-function input 1 (Closed: Forward run, Open: Stop)			
Multi-Function Digital Inputs	S2	Multi-function input 2 (Closed: Reverse run, Open: Stop)	Photocoupler		
	S3	Multi-function input 3 (External fault (N.O.)	24 Vdc, 8 mA		
	S4	Multi-function input 4 (Fault reset)			
	\$5	Multi-function input 5 (Multi-step speed reference 1)	Note: Drive preset to sinking mode. When using source mode, set DIP switch S3 to allow for a 24 Vdc (±10%) external power supply.		
	S6	Multi-function input 6 (Multi-step speed reference 2)			
	S7	Multi-function input 7 (Jog reference)			
	SC	Multi-function input common (Control common)	Sequence common		
Safe Disable	НС	Power supply for safe disable input	+24 Vdc (max 10 mA allowed)		
Input	H1	Safe disable input	Open: Output disabled Closed: Normal operation		
Main	RP	Multi-function pulse train input (frequency reference)	Response frequency: 0.5 to 32 kHz (Duty Cycle: 30 to 70%) (High level voltage: 3.5 to 13.2 Vdc) (Low level voltage: 0.0 to 0.8 Vdc) (input impedance: 3 kΩ)		
Frequency	+V	Analog input power supply	+10.5 Vdc (max allowable current 20 mA)		
Reference Input	A1	Multi-function analog input 1 (frequency reference)	Input voltage 0 to +10 Vdc (20 kΩ) resolution 1/1000		
	A2	Multi-function analog input 2 (frequency reference)	Input voltage or input current (Selected by DIP switch S1) 0 to +10 Vdc (20 k Ω), Resolution: 1/1000 4 to 20 mA (250 Ω) or 0 to 20 mA (250 Ω), Resolution: 1/500		
	AC	Frequency reference common	0 V		

■ Output Terminals

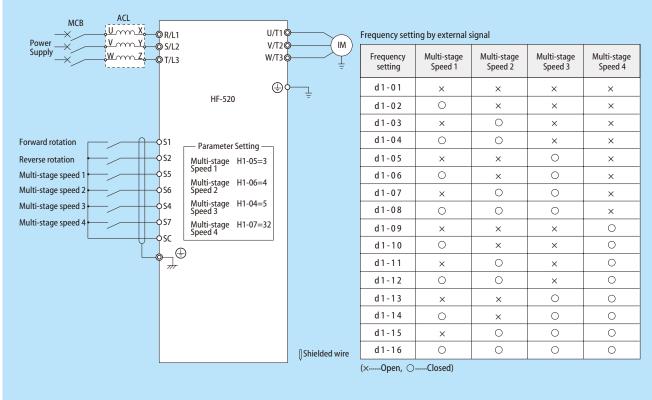
Туре	No.	Terminal Name (Function)	Function (Signal Level) Default Setting
Multi-Function Digital Output MA MB MC	MA	N.O. (fault)	Digital output
	MB	N.C. output (fault)	30 Vdc, 10 mA to 1 A; 250 Vac, 10 mA to 1 A
	MC	Digital output common	Minimum load: 5 Vdc, 10 mA (reference value)
Multi-Function P1	P1	Photocoupler output 1 (During run)	
Photocoupler	P2	Photocoupler output 2 (Frequency agree)	Photocoupler output 48 Vdc, 2 to 50 mA
Output	PC	Photocoupler output common	
	MP	Pulse train output (Output frequency)	32 kHz (max), DC5-12V (50% duty)
Monitor Output	AM	Analog monitor output	0 to 10 Vdc (2 mA or less) Resolution: 1/1000
	AC	Monitor common	0 V

■ Operation by Current Signal (4-20mA)

When terminal S5 is used as a current/Voltage signal (Frequency reference setting potentiometer) Changeover signal input.

Note: 1. Set parameter b1-01 to "1: Frequency Reference Selection 1".

Set parameter H1-05 to "3: Multi-Function Digital Input Terminal S5 Function Selection".


Set parameter H3-02 to "0: A1 Frequency Bias".

Set parameter H3-09 to "2: Terminal A2 Signal Level Selection".

Set parameter H3-10 to "2: A2 Auxiliary Frequency Reference".

- 2. Install a step-down transformer when the power is 400 V-class.
- 3. Connect the earth for shielded wire to the ground.

■ Multispeed Operation (16-Step Speed)

Table of Parameters

[&]quot; \times " in the "Control Mode" column indicates that the parameter is not available in the Set up and Parameter mode .

Function	No.	Name	Range	Def. Note: 1	_	l Mode
			,		V/f	SV
	A1-01	Access Level Selection	0 ~ 2	2	0	0
ion	A1-02	Control Method Selection	0,2	0	S	S
izati net	A1-03	Initialize Parameters	0 ~ 5550	0	0	0
Initialization Parameters	A1-04	Password	0 ~ 9999	0	0	0
= ₽	A1-05 ^{Note: 2}	Password Setting	0 ~ 9999	0	0	0
	A1-06	Application Preset	0 ~ 8	0	0	0
User Parameters	A2-01 ~ A2-32	User Parameters, 1 to 32	b1-01 ~ o2-08	-	0	0
Par	A2-33	User Parameter Automatic Selection	0,1	1	0	0
	b1-01	Frequency Reference Selection 1	0 ~ 4	1	S	S
	b1-02	Run Command Selection 1	0 ~ 3	1	S	S
=	b1-03	Stopping Method Selection	0 ~ 3	0	S	S
ectic	b1-04	Reverse Operation Selection	0,1	0	0	0
Sel	b1-07	LOCAL/REMOTE Run Selection	0,1	0	0	0
Operation Mode Selection	b1-08	Run Command Selection while in Programming Mode	0~2	0	0	0
ratic	b1-14	Phase Order Selection	0,1	0	0	
Ope	b1-15	Frequency Reference Selection 2	0,1	0	0	
	b1-16	Run Command Selection 2	0~3	0	0	$\frac{\circ}{\circ}$
	b1-16	Run Command at Power Up		1		_
	b1-17 b2-01		0,1		0	0
ing		DC Injection Braking Start Frequency	0.0 ~ 10.0	0.5 Hz	0	0
DC Injection Braking	b2-02 b2-03	DC Injection Braking Current DC Injection Braking Time/	0 ~ 75 0.00 ~ 10.00	50% 0.00 s	0	0
Injectio	b2-03	DC Excitation Time at Start DC Injection Braking Time at Stop	0.00 ~ 10.00	0.00 s	0	0
2	b2-08	Magnetic Flux Compensation Value	0 ~ 1000	0%	×	Ŏ
	b3-01	Speed Search Selection at Start	0,1	0	Ô	0
	b3-02	Speed Search Deactivation Current	0 ~ 200	120	0	$\stackrel{\circ}{\vdash}$
ch	b3-02			2.0 s	-	0
	b3-05	Speed Search Deceleration Time	0.1 ~ 10.0		0	
		Speed Search Delay Time	0.0 ~ 100.0	0.2 s Note: 4	0	$\overline{\bigcirc}$
	b3-06 b3-08	Output Current 1 during Speed Search Current Control Gain during Speed Search (Speed Estimation Type)	0.0 ~ 2.0 0.00 ~ 6.00	0.5	0	0
Speed Search	b3-10	Speed Search Detection	1.00 ~ 1.20	1.05	0	0
Spe	b3-14	Compensation Gain Bi-Directional Speed Search Selection	0,1	0	0	0
	b3-17	Speed Search Restart Current Level	0 ~ 200	150%	Ō	Ō
	b3-18	Speed Search Restart Detection Time	0.00 ~ 1.00	0.10 s	Ō	Ō
	b3-19	Number of Speed Search Restarts	0 ~ 10	3	Ō	Ŏ
	b3-24	Speed Serch Method Selection	0,1	0	Ö	ō
	b3-25	Speed Serch Retry Interval Time	0 to 30.0	0.5 s	ŏ	
-	b4-01	Timer Function On-Delay Time	0.0 ~ 300.0	0.0 s	0	0
Timer	b4-02	Timer Function Off-Delay Time	0.0 ~ 300.0	0.0 s	0	0
		· · · · · · · · · · · · · · · · · · ·			-	$\overline{}$
	b5-01 b5-02	PID Function Setting Proportional Gain Setting (P)	0 ~ 4 0.00 ~ 25.00	1.00	0	0
					-	
	b5-03	Integral Limit Setting (I)	0.0 ~ 360.0	1.0 s	0	
	b5-04	Integral Limit Setting	0.0 ~ 100.0	100.0%	0	$\frac{\circ}{\circ}$
	b5-05	Derivative Time (D)	0.00 ~ 10.00	0.00 s	0	$\frac{\circ}{\circ}$
	b5-06	PID Output Limit	0.0 ~ 100.0	100.0%	0	0
	b5-07	PID Offset Adjustment	-100.0 ~+100.0	0.0%	0	0
_	b5-08	PID Primary Delay Time Constant	0.00 ~ 10.00	0.00 s	0	0
ntro	b5-09	PID Output Level Selection	0,1	0	0	0
PID Contro	b5-10	PID Output Gain Setting	0.00 ~ 25.00	1.00	0	0
][b5-11	PID Output Reverse Selection PID Feedback Reference Missing	0,1	0	0	0
	b5-12	Detection Selection	0~5	0	0	0
	b5-13	PID Feedback Loss Detection Level	0 ~ 100	0%	0	
	b5-14	PID Feedback Loss Detection Time	0.0 ~ 25.5	1.0 s	0	0
	b5-15	PID Sleep Function Start Level	0.0 ~ 400.0	0.0 Hz	0	0
	b5-16	PID Sleep Delay Time	0.0 ~ 25.5	0.0 s	0	0
	b5-17	PID Accel/Decel Time	0 ~ 255	0 s	0	0
	b5-18	PID Setpoint Selection	0,1	0	0	0

Function	No.	Name	Range	Def. Note: 1	Contro	
					V/f	SV
	b5-19	PID Setpoint Value	0.00 ~ 100.00	0.00%	0	0
	b5-20	PID Setpoint Scaling	0 ~ 3	1	0	0
	b5-34	PID Output Lower Limit	-100.0 ~ 100.0	0.0%	0	0
	b5-35	PID Input Limit	0 ~ 1000.0	1000.0%	0	0
trol	b5-36	PID Feedback High Detection Level	0 ~ 100	100%	0	0
PID Contro	b5-37	PID Feedback High Level Detection Time	0.0 ~ 25.5	1.0 s	0	0
PID	b5-38	PID Setpoint / User Display	1 ~ 60000	Note: 4	0	0
	b5-39	PID Setpoint Display Digits	0~3		0	0
	b5-40	Frequency Reference Monitor Content during PID	0,1	0	0	0
	b5-47	Reverse Operation Selection 2 by PID Output	0,1	1		0
- L	b6-01	Dwell Reference at Start	0.0 ~ 400.0	0.0 Hz	Ö	0
Dwell Function	b6-02	Dwell Time at Start	0.0 ~ 10.0	0.0 s	\overline{C}	0
E.	b6-03	Dwell Frequency at Stop	0.0 ~ 400.0	0.0 Hz		0
wel	b6-04			0.0112	-	-
		Dwell Time at Stop	0.0 ~ 10.0	0.0 \$	0	0
_	b8-01	Energy Saving Control Selection	0,1		0	0
Energy Saving	b8-02	Energy Saving Gain	0.0 ~ 10.0	0.7	×	0
/ Sa	b8-03	Energy Saving Control Filter Time Constant	0.00 ~ 10.00	0.50	×	0
erg)	b8-04	Energy Saving Coefficient Value	0.00 ~655.00	Note: 4	0	×
표	b8-05	Power Detection Filter Time	0 ~ 2000	20 ms	0	×
	b8-06	Search Operation Voltage Limit	0 to 100%	0%	0	×
	C1-01	Acceleration Time 1			S	S
	C1-02	Deceleration Time 1			S	S
	C1-03	Acceleration Time 2			0	0
	C1-04	Deceleration Time 2			-	
Jes	C1-04				0	0
tion Tin	C1-05	Acceleration Time 3 (Motor 2 Accel Time 1)	0.0 ~		0	0
Decelera	C1-06	Deceleration Time 3 (Motor 2 Decel Time 1)	6000.0 Note: 3	10.0 s	0	0
on and [C1-07	Acceleration Time 4 (Motor 2 Accel Time 2)			0	0
Acceleration and Deceleration Times	C1-08	Deceleration Time 4 (Motor 2 Decel Time 2)			0	0
Ă	C1-09	Fast-Stop Time			0	0
	C1-10	Accel/Decel Time Setting Units	0.1	1	0	0
	C1-11	Accel/Decel Time Switching Frequency	0.0 ~ 400.0	0.0 Hz	Ō	Ō
	C1-14	Accel/Decel Rate Frequency	0.0 ~ 400.0	0.0 Hz	Ö	0
	C2-01	S-Curve Characteristic at Accel Start	0.00 ~ 10.00	0.00 s	-	0
ē.					0	_
S-Curve	C2-02	S-Curve Characteristic at Accel End	0.00 ~ 10.00	0.00 s	0	0
S-(C2-03	S-Curve Characteristic at Decel Start	0.00 ~ 10.00	0.00 s	0	0
	C2-04	S-Curve Characteristic at Decel End	0.00 ~ 10.00	0.00 s	0	0
	C3-01	Slip Compensation Gain	0.0 ~ 2.5	0.0	0	0
ے	C3-02	Slip Compensation Primary Delay Time	0 ~ 10000	2000 ms	0	0
atio	C3-03	Slip Compensation Limit	0 ~ 250	250%	0	0
Slip Compensation	C3-04	Slip Compensation Selection during Regeneration	0,1	1	0	0
Slip Cc	C3-05	Output Voltage Limit Operation Selection	0,1	1	×	0
	(2 10		70.0 to 100.0	00.00/	L.,	
	C3-18	Output Voltage Limit Level	70.0 to 100.0	90.0%	×	0
_	C4-01	Torque Compensation Gain	0.00 ~ 2.50	1.00	0	0
Torque Compensation	C4-02	Torque Compensation Primary Delay Time	0 ~ 60000	200 ms	0	0
npe	C4-03	Torque Compensation at Forward Start	0.0 ~ 200.0	0.0%	×	0
Co	C4-04	Torque Compensation at Reverse Start	-200.0 ~ 0.0	0.0%	×	0
anb.	C4-05	Torque Compensation Time Constant	0 ~ 200	10 ms	×	0
Tor	C4-06	Torque Compensation Primary Delay Time 2	0 ~ 10000	150 ms	×	0
	C5-01	ASR Proportional Gain 1	0.00 ~ 300.00	0.20	0	×
rol		· ·			_	
Speed Control (ASR)	C5-02	ASR Integral Time 1	0.000 ~ 10.000	0.200	0	×
ed C (AS	C5-03	ASR Proportional Gain 2	0.00 ~ 300.00	0.02	0	×
1 6	C5-04	ASR Integral Time 2	0.000 ~ 10.000	0.050 s	0	×
Spe	C5-05	ASR Limit	0.0 ~ 20.0	5.0%		

[&]quot;S" in the "Control Mode" column indicates that the parameter is available in the Set up and Parameter mode.

[&]quot;O" in the "Control Mode" column indicates that the parametr is available in the Parametr mode.

Note: 1. Default setting is determined by A1-02, Control Method Selection.

^{2.} This parameter is hidden from view to access A1-05, first display A1-04. Then press the STOP key while holding down the up arrow key.

3. Setting range value is dependent on parameter C1-10, Accel/Decel Time Setting Units.

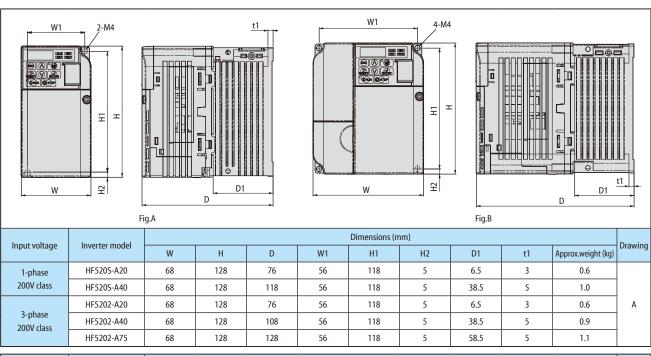
4. Default setting value is dependent on parameter o2-04, Drive Model Selection.

Function	No.	Name	Range	Def. Note: 1	Contro V/f	l Mode SV
>	C6-01	Drive Duty Selection	0,1	0	S	S
Carrier Frequency	C6-02	Carrier Frequency Selection	1 ~ B,F	2	S	S
requ	C6-03	Carrier Frequency Upper Limit	1.0 ~ 15.0		0	0
rier F	C6-04	Carrier Frequency Lower Limit	1.0 ~ 15.0	Note: 4	Ö	×
Car	C6-05	Carrier Frequency Proportional Gain	00 ~ 99		Ŏ	×
	d1-01	Frequency Reference 1			S	S
	d1-02	Frequency Reference 2			S	S
	d1-03	Frequency Reference 3			S	S
	d1-04	Frequency Reference 4			S	S
	d1-05	Frequency Reference 5			0	0
	d1-06	Frequency Reference 6			0	0
nce	d1-07	Frequency Reference 7			0	0
Frequency Reference	d1-08	Frequency Reference 8	0.00 400.00	0.0011-	0	0
-y Re	d1-09	Frequency Reference 9	0.00 ~400.00	0.00Hz	0	0
nen	d1-10	Frequency Reference 10			0	0
Freq	d1-11	Frequency Reference 11			0	0
_	d1-12	Frequency Reference 12			0	0
	d1-13	Frequency Reference 13			0	0
	d1-14	Frequency Reference 14			0	0
	d1-15	Frequency Reference 15			0	0
	d1-16	Frequency Reference 16			0	0
	d1-17	Jog Frequency Reference	0.00 ~ 400.00	5.00 Hz	S	S
. s	d2-01	Frequency Reference Upper Limit	0.0 ~ 110.0	100.0%	0	0
Freq. Limits	d2-02	Frequency Reference Lower Limit	0.0 ~ 110.0	0.0%	0	0
	d2-03	Master Speed Reference Lower Limit	0.0 ~ 110.0	0.0%	0	0
>-	d3-01	Jump Frequency 1	0.0 ~ 400.0	0.0 Hz	0	0
mb	d3-02	Jump Frequency 2	0.0 ~ 400.0	0.0 Hz	0	0
Jump Frequency	d3-03	Jump Frequency 3	0.0 ~ 400.0	0.0 Hz	0	0
	d3-04	Jump Frequency Width	0.0 ~ 20.0	1.0 Hz	0	0
	d4-01	Frequency Reference Hold Function Selection	0,1	0	0	0
	d4-03	Frequency Reference Bias Step (Up/Down 2)	0.00 ~ 99.99	0.00Hz	0	0
_	d4-04	Frequency Reference Bias Accel/Decel (Up/Down 2)	0,1	0	0	0
nce Hold	d4-05	Frequency Reference Bias Operation Mode Selection (Up/Down 2)	0,1	0	0	0
Frequency Reference Hold	d4-06	Frequency Reference Bias (Up/Down 2)	-99.9 ~ +100.0	0.0%	0	0
Frequenc	d4-07	Analog Frequency Reference Fluctuation Limit (Up/Down 2)	0.1 ~ +100.0	1.0%	0	0
	d4-08	Frequency Reference Bias Upper Limit (Up/Down 2)	0.0 ~ 100.0	100.0%	0	0
	d4-09	Frequency Reference Bias Lower Limit (Up/Down 2)	-99.9 ~ 0.0	0.0%	0	0
	d4-10	Up/Down Frequency Reference Limit Selection	0,1	0	0	0
£ .	d7-01	Offset Frequency 1	-100.0 ~ +100.0	0.0%	0	0
Offset Freq.	d7-02	Offset Frequency 2	-100.0 ~ +100.0	0.0%	0	0
	d7-03	Offset Frequency 3	-100.0 ~ +100.0	0.0%	0	0
v	E1-01 ^{Note: 2}	Input Voltage Setting	155 ~ 255	Note: 4	S	S
istic	E1-03	V/f Pattern Selection	0 ~ F	F	0	0
acter	E1-04	Maximum Output Frequency	40.0 ~ 400.0	60.0 Hz	S	S
.hara	E1-05 ^{Note: 2}	Maximum Output Voltage	0.0 ~ 255.0	200.0 V	S	S
ın C	E1-06	Base Frequency	0.0 ~ E1-04	60.0 Hz	S	S
V/f Pattern Characteristics	E1-07	Middle Output Frequency	0.0 ~ E1-04	3.0 Hz	0	0
V/f	E1-08	Middle Output Frequency Voltage	0.0 ~ 255.0	Note: 4	0	0

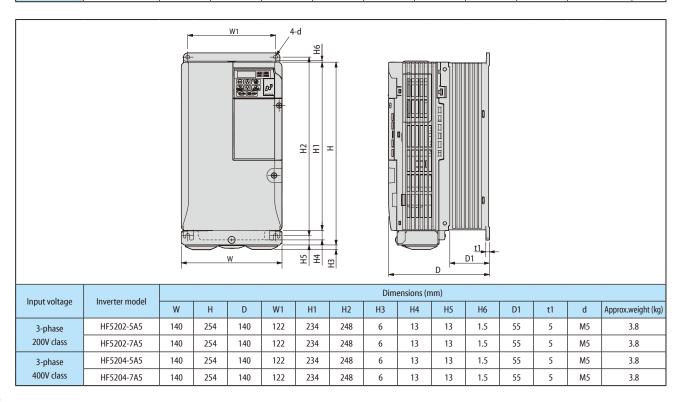
Function	No.	Name	Range	Def. Note: 1	Contro	_
	F1 00	Minimum Output Frances	, and the second		V/f	SV
ر Si	E1-09	Minimum Output Frequency	0.0 ~ E1-04	1.5 Hz Note: 4	S	S
V/f Pattern Characteristics	E1-10	Minimum Output Frequency Voltage	0.0 ~ 255.0		0	0
f Pa	E1-11	Middle Output Frequency 2	0.0 ~ E1-04	0.0 Hz	0	0
Cha	E1-12 ^{Note: 2}	Middle Output Frequency Voltage 2	0.0 ~ 255.0	0.0 V	0	0
	E1-13 ^{Note: 2}	Base Voltage	0.0 ~ 255.0	0.0 V	0	S
	E2-01	Motor Rated Current	Rated Current 10 ~ 200%	Note: 4	S	S
	E2-02	Motor Rated Slip	0.00 ~ 20.00		0	0
	E2-03	Motor No-Load Current	0 ~ E2-01 below		0	0
ters	E2-04	Number of Motor Poles	2 ~ 48	4pole	0	0
Motor Parameters	E2-05	Motor Line-to-Line Resistance	0.000 ~ 65.000	Note: 4	0	0
Par	E2-06	Motor Leakage Inductance	0.0 ~ 40.0		0	0
otor	E2-07	Motor Iron-Core Saturation Coefficient 1	0.00 ~ 0.50	0.50	×	0
Š	E2-08	Motor Iron-Core Saturation Coefficient 2	E2-07 ~ 0.75	0.75	×	0
	E2-09	Motor Mechanical Loss	0.0 ~ 10.0	0.0%	×	0
	E2-10	Motor Iron Loss for Torque Compensation	0 ~ 65535	Note: 4	0	×
	E2-11	Motor Rated Output	0.00 ~ 650.00		S	S
	E2-12	Motor Iron-Core Saturation Coefficient 3	1.30 ~ 5.00	1.30	×	0
	E3-01	Motor 2 Control Method	0,2	0	0	0
	E3-04	Motor 2 Max Output Frequency	40.0 ~ 400.0	60.0 Hz	0	0
	E3-05 ^{Note: 2}	Motor 2 Max Voltage	0.0 ~ 255.0	200.0 V	0	0
Motor 2 V/f Characteristics	E3-06	Motor 2 Base Frequency	0.0 ~ E3-04	60.0 Hz	0	0
	E3-07	Motor 2 Mid Output Freq.	0.0 ~ E3-04	3.0 Hz	0	0
	E3-08 ^{Note: 3}	Motor 2 Mid Output Freq. Voltage	0.0 ~ 255.0	13.6 V (26.6 V)	0	С
λ.	E3-09	Motor 2 Min. Output Freq.	0.0 ~ E3-04	1.5 Hz	0	С
Motor 2	E3-10 ^{Note: 3}	Motor 2 Min. Output Freq. Voltage	0.0 ~ 255.0	9.1 V (17.7V)	0	0
	E3-11	Motor 2 Mid Output Frequency 2	0.0 ~ E3-04	0.0 Hz	0	0
	E3-12 ^{Note: 2}	Motor 2 Mid Output Frequency Voltage 2	0.0 ~ 255.0	0.0 V	0	O
	E3-13 ^{Note: 2}	Motor 2 Base Voltage	0.0 ~ 255.0	0.0 V	Ō	S
	E4-01	Motor 2 Rated Current	Rated Current 10 ~ 200%	Note: 4	0	С
	E4-02	Motor 2 Rated Slip	0.00 ~ 20.00	Note. 4		С
	E4-03	Motor 2 Rated No- Load Current	0 ~ E4-01 below		Ō	Ŏ
	E4-04	Motor 2 Motor Poles	2 ~ 48	4pole	Ō	Ŏ
	E4-05	Motor 2 Line-to- Line Resistance	0.000 ~ 65.000		Ō	Č
	E4-06	Motor 2 Leakage Inductance	0.0 ~ 40.0	Note: 4	Ö	C
meters	E4-07	Motor 2 Motor Iron-Core Saturation Coefficient 1	0.00 ~ 0.50			С
Motor 2 Parameters	E4-08	Motor 2 Motor Iron-Core Saturation Coefficient 2	Setting of E4-07 ~ 0.75	0.75	×	С
Mot	E4-09	Motor 2 Mechanical Loss	0.0 ~ 10.0	0.0	×	С
	E4-10	Motor 2 Iron Loss	0 ~ 65535	Note: 4	0	×
	E4-11	Motor 2 Rated Capacity	0.00 ~ 650.00		Ō	×
	E4-12	Motor 2 Iron-Core Saturation Coefficient 3	1.30 ~ 5.00	1.30	×	С
	E4-14	Motor 2 Slip Compensation Gain	0.0 ~ 2.5	0.0	0	C
	E4-15	Torque Compensation Gain Motor 2	0.00 ~ 2.50	1.00	Ō	Č
	E5-39	Current Detection Delay Time	-1000 to 1000	0μs	Ö	
PG Setup Parameters	F1-02	Operation Selection at PG Open Circuit (PGo)	0~3	1	0	×
ıram	F1-03	Operation Selection at Overspeed (oS)	0~3	1	0	×
Pa	F1-04	Operation Selection at Deviation	0~3	3	0	×
	11.04	operation selection at Deviation	0.*3	ر	\cup	<u> </u>
Setup	F1-08	Overspeed Detection Level	0 ~ 120	115%		×

Note: 1. Default setting is determined by A1-02, Control Method Selection.
2. Values shown here are for 200 V class drives. Double the value when using a 400 V class drive.
3. Values shown here are for 200 V class drives. () the value when using a 400 V class drive.
4. Default setting value is dependent on parameter o2-04, Drive Model Selection.

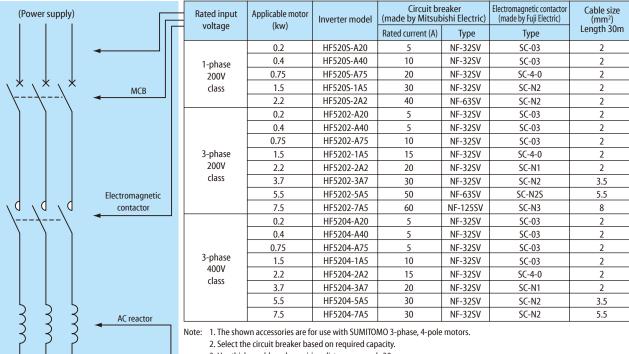
Function	No.	Name	Range	Def. Note: 1	Contro V/f	l Mode SV
- 2	F1-10	Excessive Speed Deviation Detection Level	0 ~ 50	10%	0	×
PG Setup Parameters	F1-11	Excessive Speed Deviation Detection Delay Time	0.0 ~ 10.0	0.5 s	0	×
P B	F1-14	PG Open-Circuit Detection Time	0.0 ~ 10.0	2.0 s	0	×
	F6-01	Communications Error Operation Selection	0 ~ 3	1	0	0
	F6-02	External Fault from Comm. Option Selection	0,1	0	0	0
	F6-03	External Fault from Comm. Option Operation Selection	0~3	1	0	0
	F6-04	Bus Error Detection Time	0.0 ~ 5.0	2.0 s	0	0
	F6-07	NetRef/ComRef Function Selection	0,1	0	Ō	Ō
	F6-08	Reset Communication Parameters	0,1	0	0	0
	F6-10	CC-Link Node Address	0 ~ 64	0	0	0
_	F6-11	CC-Link Communications Speed	0 ~ 4	0	0	0
Gard	F6-14	BUS Error Auto Reset	0,1	0	Ō	Ō
ion (F6-50	DeviceNet MAC Address	0 ~ 64	0	Ō	Ŏ
Opt	F6-51	Device Net Communications Speed	0 ~ 4	0	Ŏ	ō
ons	F6-52	DeviceNet PCA setting	0 ~ 255	21	Ŏ	0
icati	F6-53	DeviceNet PPA setting	0 ~ 255	71	Ö	ŏ
E	F6-54	54 DeviceNet Idle Mode Fault Detection	0,1	0	0	0
Serial Communications Option Card	F6-55	DeviceNet Baud Rate Monitor	0 ~ 2	-	0	0
Seri			(Read only)			_
	F6-56	DeviceNet Speed Scaling Factor	-15 ~ 15	0	0	0
	F6-57	DeviceNet Current Scaling Factor	-15 ~ 15	0	0	0
	F6-58	DeviceNet Torque Scaling Factor	-15 ~ 15	0		0
	F6-59	DeviceNet Power Scaling Factor	-15 ~ 15	0		0
	F6-60	DeviceNet Voltage Scaling Factor	-15 ~ 15	0	0	0
	F6-61	DeviceNet Time Scaling Factor	-15 ~ 15	0	0	0
	F6-62	DeviceNet Heartbeat Interval	0 ~ 10	0	0	0
	F6-63	MAC ID Memory	0 ~ 63 (Read only)	-	0	0
	H1-01	Multi-Function Digital Input Terminal S1 Function Selection		40	0	0
_	H1-02	Multi-Function Digital Input Terminal S2 Function Selection	1 ~ 9F	41	0	0
italInpui	H1-03	Multi-Function Digital Input Terminal S3 Function Selection		24	0	0
Multi-Function Digital Input	H1-04	Multi-Function Digital Input Terminal S4 Function Selection		14	0	0
ulti-Func	H1-05	Multi-Function Digital Input Terminal S5 Function Selection	0 ~ 9F	3(0)	0	0
W	H1-06	Multi-Function Digital Input Terminal S6 Function Selection		4(3)	0	0
	H1-07	Multi-Function Digital Input Terminal S7 Function Selection		6(4)	0	0
gital	H2-01	Terminal MA, MB and MC Function Selection (relay)		E	0	0
-unction Di Outputs	H2-02	Terminal P1 Function Selection (open- collector)	0 ~ 192	0	0	0
Multi-Function Digital Outputs	H2-03	Terminal P2 Function Selection (open- collector)		2	0	0
	H2-06	Watt Hour Output Unit Selection	0 ~ 4	0	0	0
	H3-01	Terminal A1 Signal Level Selection	0,1	0	0	0
	H3-02	Terminal A1 Function Selection	0 ~ 41	0	0	0
	H3-03	Terminal A1 Gain Setting	-999.9 ~999.9	100.0%	0	0
돨	H3-04	Terminal A1 Bias Setting	-999.9 ~999.9	0.0%	0	0
Analog Inputs	H3-09	Terminal A2 Signal Level Selection	0 ~ 3	2	0	0
log	H3-10	Terminal A2 Function Selection	0 ~ 41	0	Ō	Ō
Ans	H3-11	Terminal A2 Gain Setting	-999.9 ~ 999.9	100.0%	Ō	0
	H3-12	Terminal A2 Bias Setting	-999.9 ~ 999.9	0.0%	Ŏ	Ō
	H3-13	Analog Input Filter Time Constant	0.00 ~ 2.00	0.03 s	Ŏ	Ō
						_


Function	No.	Name	Range	Def. Note: 1	Contro V/f	l Mode SV
log	H3-16	Terminal A1 Offset	-500 ~ 500	0	0	0
Analog Inputs	H3-17	Terminal A2 Offset	-500 ~ 500	0		Ō
	H4-01	Multi-Function Analog Output Terminal AM	000 ~ 999	102	$\frac{1}{100}$	ŏ
Wulti-Function H4-02 H4-03		Multi-Function Analog Output Terminal AM Gain	-999.9 ~999.9	100.0%	S	S
Multi-F Analog	H4-03	Multi-Function Analog Output Terminal AM Bias	-999.9 ~999.9	0.0%	0	0
	H5-01	Drive Node Address	0 ~ FFH	1F	0	0
	H5-02	Communication Speed Selection	0~8	3		$\frac{\circ}{\circ}$
SL	H5-03	Communication Parity Selection	0 ~ 2	0	0	0
MEMOBUS/Modbus Communications	H5-04	Stopping Method After Communication Fror	0~3	3	0	0
E	H5-05	Communication Fault Detection Selection	0,1	1		
s Co	H5-06		5 ~ 65		0	0
nqp		Drive Transmit Wait Time		5 ms	0	0
W/W	H5-07	RTS Control Selection	0,1	1	0	0
BUS	H5-09	CE Detection Time	0.0 ~ 10.0	2.0 s	0	0
MEMOI	H5-10	Unit Selection for MEMOBUS/Modbus Register 0025H	0,1	0	0	0
	H5-11	Communications ENTER Function Selection	0,1	1	0	0
	H5-12	Run Command Method Selection	0,1	0	0	0
	H6-01	Pulse Train Input Terminal RP Function Selection	0~3	0	0	0
bnt	H6-02	Pulse Train Input Scaling	100 ~ 32000	1440 Hz	0	0
Out,	H6-03	Pulse Train Input Gain	0.0 ~ 1000.0	100.0%	0	0
put	H6-04	Pulse Train Input Bias	-100.0 ~+100.0	0.0%	0	0
n L	H6-05	Pulse Train Input Filter Time	0.00 ~ 2.00	0.10 s	0	Ō
Pulse Train Input/Output	H6-06	Pulse Train Monitor Terminal MP Selection	000,031,101,102, 105,116,501,502	102	0	0
P	H6-07	Pulse Train Monitor Scaling	0 ~ 32000	1440 Hz	0	0
		-	0.1 ~ 1000.0			-
	H6-08	Pulse Train Min. Frequency		0.5 Hz	0	0
	L1-01	Motor Overload Protection Selection	0 ~ 2,6		S	S
	L1-02	Motor Overload Protection Time Motor Overheat Alarm Operation Selection (PTC input)	0.1 ~ 5.0 0 ~ 3	1.0 min	0	0
Momentary Power Loss	L1-04	Motor Overheat Fault Operation Selection (PTC input)	0~2	1	0	0
entary Po	L1-05	Motor Temperature Input Filter Time (PTC input)	0.00 ~ 10.00	0.20 s	0	0
Jom(L1-08	Electrothermal Level Setting 1	□.□□A	Note: 4	0	0
Σ	L1-09	Electrothermal Level Setting 2	10~150%		0	0
	L1-13	Continuous Electrothermal Operation Selection	0,1	1	0	0
	L1-22 ^{Note: 2}	'	0.0 ~ 60.0	20.05	Ō	Ŏ
		Leakage Current Filter Time Constant 2	0.0 ~ 60.0	1.05	Ō	Ō
	L2-01	Momentary Power Loss Operation Selection	0 ~ 2	0	Ŏ	Ŏ
	L2-02	Momentary Power Loss Ride-Thru Time	0.0 ~ 25.5		Ö	Ŏ
ion	L2-03	Momentary Power Loss Minimum Baseblock Time	0.1 ~ 5.0	Note: 4	0	0
Stall Prevention Function	L2-04	Momentary Power Loss Voltage Recovery Ramp Time	0.0 ~ 5.0	.40te.4	0	0
enti	L2-05 ^{Note: 3}	Undervoltage Detection Level (Uv)	150 ~ 210		0	0
Pre	L2-06	KEB Deceleration Time	0.0 ~ 200.0	0.0s	0	0
ata	L2-07	KEB Acceleration Time	0.0 ~ 25.5	0.0s	Ò	ō
01	L2-08	KEB Start Output Frequency Reduction	0 ~ 300	100%	Ō	Ō
	L2-11 ^{Note: 3}	Desired DC Bus Voltage during KEB	150 ~ 400	E1-01× 1.22(V)	0	0
	L3-01	Stall Prevention Selection during Acceleration	0 ~ 2	1	0	0
E .	L3-02	Stall Prevention Level during Acceleration	0 ~ 150	Note: 4	0	0
Stall Prevention Function	L3-03	Stall Prevention Limit during Acceleration	0 ~ 100	50%		
Prev. Incti	L3-03	Stall Prevention Selection during Deceleration	0 ~ 4,7	0	S	S
tall F Fu				1		_
Σ	L3-05	Stall Prevention Selection during Run	0~2	Note: 4	0	×
	L3-06	Stall Prevention Level during Run	30 ~ 150		0	×

Note: 1. Default setting is determined by A1-02, Control Method Selection.
2. Parameter can be changed and displayed at parameter C6-02=B.
3. Values shown here are for 200 V class drives. Double the value when using a 400 V class drive.
4. Default setting value is dependent on parameter o2-04, Drive Model Selection.


Function	No.	Name	Range	Def. Note: 1	Contro	
T direction					V/f	SV
	L3-11	Ov Suppression Function Selection	0,1	0	0	0
ion	L3-17 ^{Note: 3}	Overvoltage Suppression and Stall Prevention Desired DC Bus Voltage	150 ~ 400	375 V	0	0
in Funct	L3-20	Main Power Circuit Voltage Adjustment Gain	0.00 ~ 5.00	1.00	0	0
entio	L3-21	Accel/Decel Rate Calculation Gain	0.00 ~ 200.00	1.00	0	0
Stall Prevention Function	L3-23	Automatic Reduction Selection for Stall Prevention during Run	0,1	0	0	0
55	L3-24	Motor Acceleration Time for Inertia Calculations	0.001 ~10.000	Note: 3	0	0
	L3-25	Load Inertia Ratio	0.0 ~ 1000.0	1.0	0	0
	L4-01	Speed Agreement Detection Level	0.0 ~ 400.0	0.0 Hz	0	0
	L4-02	Speed Agreement Detection Width	0.0 ~ 20.0	2.0 Hz	0	0
tion	L4-03	Speed Agreement Detection Level (+/-)	-400.0 ~ 400.0	0.0 Hz	0	0
etec	L4-04	Speed Agreement Detection Width (+/-)	0.0 ~ 20.0	2.0 Hz	0	0
Frequency Detection	L4-05	Frequency Reference Loss Detection Selection	0,1	0	0	0
Freq	L4-06	Frequency Reference at Reference Loss	0.0 ~ 100.0	80.0%	0	0
-	L4-07	Frequency Detection Conditions	0,1	0	0	0
	L4-08	Speed Agreement Detection Conditions	0,1	0	0	0
ų.	L5-01	Number of Auto Restart Attempts	0 ~ 10	0	0	0
Fault Rese	L5-02	Auto Restart Operation Selection	0,1	0	Ō	Ō
aulti	L5-04	Fault Reset Interval Time	0.5 ~ 600.0	10.0 s	Ō	0
Ę.	L5-05	Fault Reset Operation Selection	0,1	0	Ŏ	Ō
	L6-01	Torque Detection Selection 1	0~8	0	0	0
	L6-02	Torque Detection Level 1	0 ~ 300	150%	Ŏ	Ō
	L6-03	Torque Detection Time 1	0.0 ~ 10.0	0.1s	Ŏ	Ō
_	L6-04	Torque Detection Selection 2	0~8	0	Ŏ	0
ctio	L6-05	Torque Detection Level 2	0 ~ 300	150%	Ŏ	ŏ
Dete	L6-06	Torque Detection Time 2	0.0 ~ 10.0	0.1 s	Ŏ	ō
Overtorque Detection	L6-08	Mechanical Weakening (oL5) Detection Operation	0~8	0	0	0
Ove	L6-09	Mechanical Weakening Detection Speed Level	-110.0 ~ 110.0	110%	0	0
	L6-10	Mechanical Weakening Detection Time	0.0 ~ 10.0	0.1 s	0	0
	L6-11	Mechanical Weakening Detection Start Time	0 ~ 65535	0h	0	0
	L7-01	Forward Torque Limit	0 ~ 300		×	0
	L7-02	Reverse Torque Limit	0 ~ 300	Note: 3	×	0
ji.	L7-03	Forward Regenerative Torque Limit	0 ~ 300		×	0
Torque Limit	L7-04	Reverse Regenerative Torque Limit	0 ~ 300		×	0
Torq	L7-06	Torque Limit Integral Time Constant	5 ~ 10000	50 ms	×	0
,	L7-07	Torque Limit Control Method Selection during Accel/Decel	0,1	1	×	0
	L8-02	Overheat Alarm Level	50 ~ 130	Note: 3	0	0
	L8-03	Overheat Pre-Alarm Operation Selection	0 ~ 4	3	Ō	0
	L8-05	Input Phase Loss Protection Selection	0,1	0	Ō	Ō
	L8-07	Output Phase Loss Protection Selection	0 ~ 2	0	0	0
	L8-09	Output Ground Fault Detection Selection	0,1	Note: 3	Ŏ	Ō
_	L8-10	Heatsink Cooling Fan Operation Selection	0,1	0	Ŏ	Ō
ctio	L8-11	Heatsink Cooling Fan Operation Delay Time	0 ~ 300	60 s	ŏ	Ö
Hardware Protection	L8-12	Ambient Temperature Setting	-10 ~ 50	40°C	Ŏ	Ö
are F	L8-15	oL2 Characteristics Selection at Low Speeds	0,1	1	Ŏ	ō
rdwa	L8-18	Soft Current Limit Selection	0,1	0	Ŏ	Ö
Harc	L8-19	Frequency Reduction Rate during oH Pre-Alarm	0.1 ~ 0.9	0.8	0	0
	L8-35	Installation Method Selection	0 ~ 2	Nec 2	0	0
	L8-38	Carrier Frequency Reduction	0~2	Note: 3	 	0
	L8-40	Carrier Frequency Reduction Time	0.00 ~ 2.00	0.50	0	0
	L8-41	High Current Alarm Selection	0,1	0.50	0	0
		Hunting Prevention Selection	0,1	1	0	×
	n1-01					
ng tion	n1-01				-	
Hunting Prevention	n1-01 n1-02 n1-03	Hunting Prevention Gain Setting Hunting Prevention Time Constant	0.00 ~ 2.50 0 ~ 500	1.00	0	×

Petection tion	No.	Name	Range	Def. Note: 1		l Mod	
Detection tion			90		V/f	SV	
	n2-01	Speed Feedback Detection Control (AFR) Gain	0.00 ~ 10.00	Note: 3	×	0	
Speed Feedback Detection Control Function	n2-02	Speed Feedback Detection Control (AFR) Time Constant	0 ~ 2000	50 ms	×	0	
Speed Fe Con	n2-03	Speed Feedback Detection Control (AFR) Time Constant 2	0 ~ 2000	750ms	×	0	
	n3-01	High-Slip Braking Deceleration Frequency Width	1 ~ 20	5%	0	×	
High-Slip Braking	n3-02	High-Slip Braking Current Limit	100 ~ 200	150%	0	×	
Bra	n3-03	High-Slip Braking Dwell Time at Stop	0.0 ~ 10.0	1.0 s	0	×	
ilè L	n3-04	High-Slip Braking Overload Time	30 ~ 1200	40 s	0	×	
di L	n3-13	Overexcitation Deceleration Gain	1.00 ~ 1.40	1.10	0	0	
_ [n3-21	High-Slip Suppression Current Level	0 ~ 150	100%	0	0	
	n3-23	Overexcitation Operation Selection	0 ~ 2	0	0	0	
Online Tuning of Motor Line-to-Line Resistance	n6-01	Line-to-Line Motor Resistance Online Tuning	0,1	1	×	0	
	o1-01	Drive Mode Unit Monitor Selection	104 ~ 699	106	0	0	
2	o1-02	User Monitor Selection After Power Up	1~5	1	Ŏ	Ō	
ting	o1-03	Digital Operator Display Selection	0 ~ 3	0	Ō	ŏ	
Display Settings	o1-10	Frequency Reference Setting and User-Set Display	1 ~ 60000	Note: 3	0	0	
	01-11	Frequency Reference Setting / Decimal Display					
	02-01	LO/RE Key Function Selection	0,1	1	0	0	
ς [o2-02	STOP Key Function Selection	0,1	1	0	0	
tion	02-03	User Parameter Default Value	0 ~ 2	0	0	0	
Ĭ.	02-04	Drive Model Selection	0 ~ FF	Note: 3	0	0	
(eypad F	o2-05	Frequency Reference Setting Method Selection	0,1	0	0	0	
Operator Keypad Functions	o2-06	Operation Selection when LED Operator is Disconnected	0,1	0	0	0	
	o2-07	Motor Direction at Power Up when Using Operator	0,1	0	0	0	
tion:	03-01	Copy Function Selection	0 ~ 3	0	0	0	
Copy	o3-02	Copy Allowed Selection	0,1	0	0	0	
	04-01	Accumulated Operation Time Setting	0 ~ 9999	0	0	0	
	04-02	Accumulated Operation Time Selection	0,1	1	0	0	
	04-03	Cooling Fan Operation Time Setting	0 ~ 9999	0	0	0	
poir	04-05	Capacitor Maintenance Setting	0 ~ 150	0%	0	0	
Maintenance Period	04-07	DC Bus Pre-Charge Relay Maintenance Setting	0 ~ 150	0%	0	0	
nten	o4-09	IGBT Maintenance Setting	0 ~ 150	0%	0	0	
Mai	o4-11	U2, U3 Initialization	0,1	0	0	0	
	04-12	kWh Monitor Initialization	0,1	0	0	0	
	04-13	Number of Run Commands Initialize Selection	0,1	0	0	0	
Special Adjustments	51-01 ^{Note: 4}	Motor Selection	0,2	2	0	0	
Sr Adjus	S2, S3	Special Adjustments	-	Note: 3	×	0	
	T1-00	Motor Selection 1/2	1,2	1	0	0	
	T1-01	Auto-Tuning Mode Selection	0,2,3	Note: 3	0	0	
	T1-02	Motor Rated Power	0.03 ~ 650.00		0	0	
F	1-03 ^{Note: 2}	Motor Rated Voltage	0.0 ~ 255.5	200.0 V	0	0	
g _i T			Datad Current				
otor Tuning	T1-04	Motor Rated Current	Rated Current 10 ~ 200%	Note: 3	0		
Motor Tuning	T1-04 T1-05	Motor Rated Current Motor Base Frequency		60.0 Hz	0	0	
Motor Tuning			10 ~ 200%			_	
Motor Tuning	T1-05	Motor Base Frequency	10 ~ 200% 0.0 ~ 400.0	60.0 Hz	0	0	


Note: 1. Default setting is determined by A1-02, Control Method Selection.
2. Values shown here are for 200 V class drives. Double the value when using a 400 V class drive.
3. Default setting value is dependent on parameter o2-04, Drive Model Selection.
4. Software version: 5551 or later.

Input voltage	Inverter model					Dimensions (n	nm)				Drawing
Input voltage		W	Н	D	W1	H1	H2	D1	t1	Approx.weight (kg)	
	HF520S-A75	108	128	137.5	96	118	5	58	5	1.7	
1-phase 200V class	HF520S-1A5	108	128	154	96	118	5	58	5	1.8	
2007 (1033	HF520S-2A2	140	128	163	128	118	5	65	5	2.4	
3-phase	HF5202-1A5	108	128	129	96	118	5	58	5	1.7	
	HF5202-2A2	108	128	137.5	96	118	5	58	5	1.7	
2007 (1033	HF5202-3A7	140	128	143	128	118	5	65	5	2.4	В
	HF5204-A20	108	128	81	96	118	5	10	5	1.0] в
	HF5204-A40	108	128	99	96	118	5	28	5	1.2	
3-phase	HF5204-A75	108	128	137.5	96	118	5	58	5	1.7	
400V class	HF5204-1A5	108	128	154	96	118	5	58	5	1.7	
	HF5204-2A2	108	128	154	96	118	5	58	5	1.7]
	HF5204-3A7	140	128	143	128	118	5	65	5	2.4	1

Standard Accessories

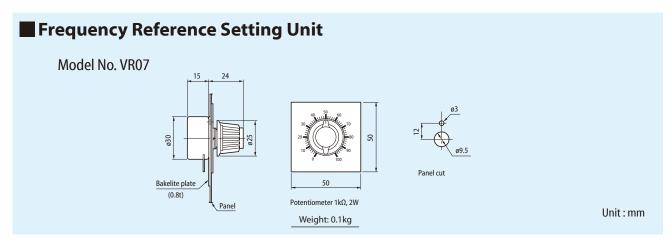
- 3. Use thicker cables when wiring distance exceeds 30 m.
- 4. The alarm output cable should be 0.75mm².

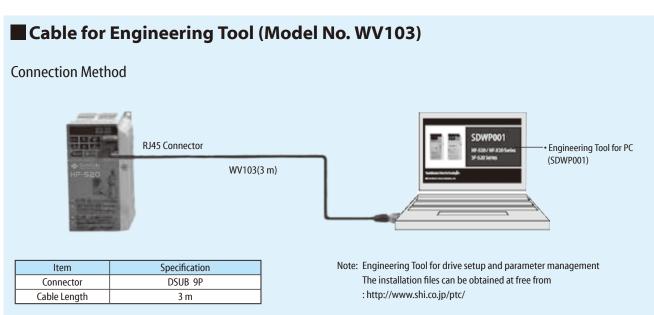
Zero-phase reactor

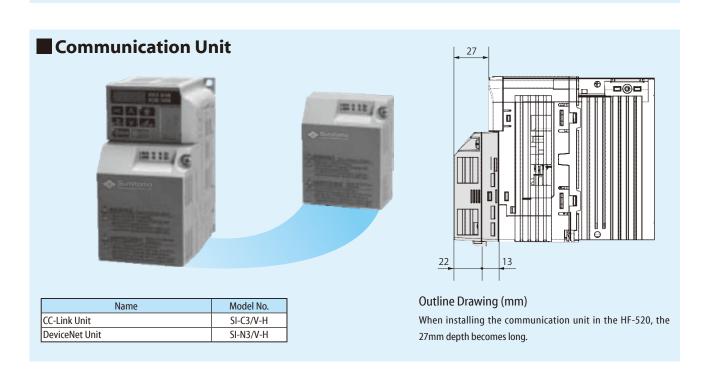
Noise filter

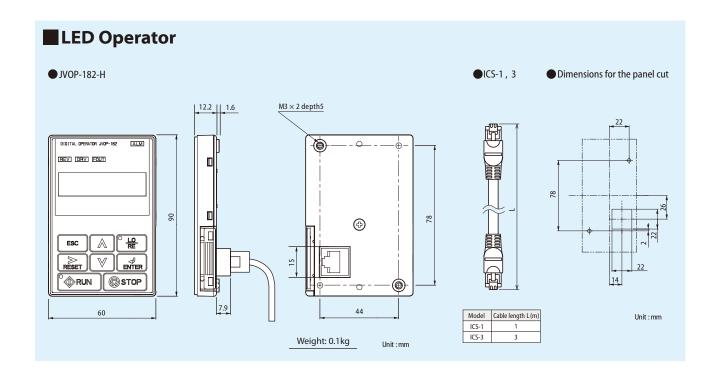
Radio noise

When using an earth leakage breaker (ELB), select the breaker's trip current from the table below based on the total wire distance (R) by summing the distance from the breaker to the inverter and the inverter to the motor.

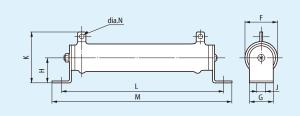

l	Trip current (mA)
100m or less	30
300m or less	100
600m or less	200


- Note: 1. When CV wiring is used in metal conduit, the leakage current is approximately 30mA/km.
 - Leakage current will increase eightfold with IV type cable due to higher dielectric constant. In this case, use ELB with the next higher trip rating.


DC reactor		
R S T +1		
H2 H	Input AC reactor for harmonic suppression/power smoothing/powerfactor improvement	This is useful in suppressing harmonics induced on the power supply lines, or when the main power voltage imbalance exceeds 3%, (and power source capacity is more than 600kVA), or to smooth out line fluctuations. It also improves the power factor.
B2	Radio noise filter Zero-phase reactor	Electrical noise interference may occur on nearby equipment such as a radio receiver. This magnetic choke filter helps reduce radiated noise.
U V W Noise	Input noise filter	This filter reduces the conducted noise in the power supply wiring between the inverter and the power distribution system. Connect it to the inverter primary (input side).
filter Zero-phase	Input radio noise filter (XY filter)	This capacitive filter reduces radiated noise from the main power wires in the inverter input side.
reactor	DC reactor	The inductor or choke filter suppresses harmonics generated by the inverter.
AC reactor	Regenerative braking resistor	The regenerative braking resistor is useful for increasing the inverter's control torque for high duty-cycle (on-off) applications, and improving the decelerating capacity.
	Output noise filter	This filter reduces radiated noise emitted on the inverter output cable that may interfere with radio or television reception and test equipment and sensor operation.
Motor	Radio noise filter Zero-phase reactor	Electrical noise interference may occur on nearby equipment such as a radio receiver. This magnetic choke filter helps reduce radiated noise.
<u> </u>	Output AC reactor	Install it on the output side to reduce leakage current contributed by higher harmonics. Contact our company for details.


■ Caution in Selecting Peripheral Equipment

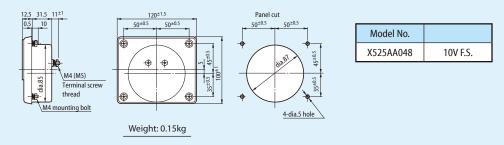
Wiring and connection		 Be sure to connect the power supply to RST (input terminals) and the motor to U, V, W (output terminals). Be sure to connect the grounding terminal. (mark) mark) Inverters generate high frequency, increasing leakage current. Be sure to ground the inverter and motor. 					
	Electromagnetic contactor	When using an electromagnetic contactor between the inverter and motor, do not turn the contactor ON or OFF during inverter operation.					
Wiring between inverter and motor	Thermal relay	stall a thermal relay that matches the motor in the following cases: nstall a thermal relay for each motor when operating more than one motor with one inverter. et the current of the thermal relay at the rated motor current x 1.1. When the wiring length is long (more than 10 m), the hermal relay may be activated too quickly. Install an AC reactor or current sensor on the output side. When motors are to be operated with the rated current exceeding the adjustable level of the built-in electronic thermal relay.					
Earth leakage bre	aker	Install an earth leakage breaker on the input side for protection of the inverter wiring and operators. Conventional earth leakage breakers may malfunction because of high harmonics from the inverter; therefore use an earth leakage breaker that is applicable to the inverter. The leakage current differs according to the cable length. Refer to p.14.					
Wiring distance		The wiring distance between the inverter and operation panel should be less than 30m. If it exceeds 30m, use a current/voltage converter, etc. Use shielded cable for wiring. When the wiring distance between the motor and inverter is long, the leakage current from high harmonics may cause the protective function of the inverter and peripheral equipment to be activated. The situation will be improved by an AC reactor installed on the output side of the inverter. Select appropriate cable to prevent voltage drop. (Large voltage drop lowers the torque.)					
Phase-advanced capacitor		Do not use a phase-advanced capacitor. When a power factor improving capacitor is connected between the inverter and motor, the capacitor may be heated or broken by the higher harmonics in the inverter output.					



■ Regenerative Braking Resistor

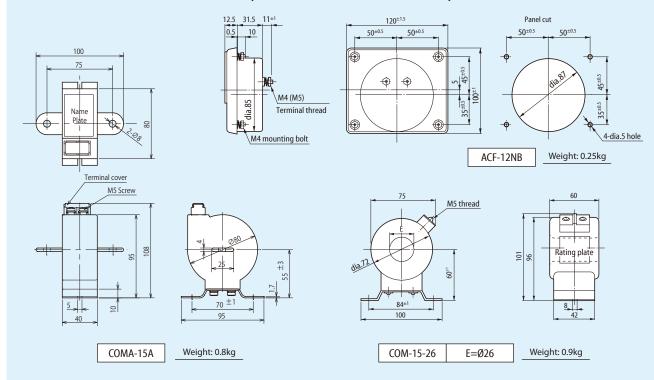
Rated power	Dimensions (mm)									
(W)	F	G	Н	J	K	L	М	N	(g)	
200	28	26	22	6	53	287	306	4	340	
300	44	40	40	10	78	309	335	5	840	
400	44	40	40	10	78	385	411	5	1000	
750	57	40	40	10	84	355	381	5	1360	

100% braking torque: 10 sec 10% ED


V-14	Cia		Braking resistor						
(V)	Capacity (kW)	Model No.	Rated power	Resistance	Qty	Thermal relay set value (A)			
	0.2	Y135AA201	200W	400Ω	1	0.83			
	0.4	Y135AA200	200W	200Ω	1	0.83			
	0.75	Y135AA205	300W	200Ω	1	1.25			
200V	1.5	Y135AA204	300W	80Ω	1	1.25			
2000	2.2	Y135AA208	400W	70Ω	1	1.7			
	3.7	Y135AA203	300W	20Ω	2-pc. series	2.1			
	5.5	X435AC069	750W	10Ω	2-pc. series	5.3			
	7.5	X435AC069	750W	10Ω	2-pc. series	5.3			
	0.2, 0.4	Y135AA202	200W	750Ω	1	0.42			
	0.75	Y135AA207	300W	750Ω	1	0.63			
	1.5	Y135AA206	300W	400Ω	1	0.63			
400V	2.2	Y135AA209	400W	250Ω	1	0.83			
	3.7	Y135AA204	300W	80Ω	2-pc. series	1.1			
	5.5	Y135AA209	400W	250Ω	3-pc. series	2.0			
	7.5	Y135AA209	400W	250Ω	3-pc. series	2.0			

Type of thermal relay: TR-ONH

■% Speed Meter: DCF-12N

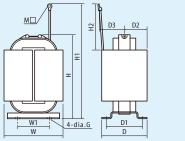

Unit: mm

0-100% 50 divisions

AC Ammeter: ACF-12NB

The current transformer (CT) directly detects the current of the secondary side of the inverter.

Table of combination of AC ammeter (ACF-12NB) and current transformer (CT)

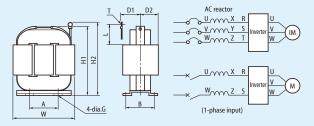

	200V class						400V class						
Motor		Me	ter		Number of		Me	ter		Number of			
(kW) Model No.		Rated current [A]	Max. scale [A]	СТ Туре	primary through holes	Model No.	Rated current [A]	Max. scale [A]	CT Type	primary through holes			
0.2	CT002AW	3	3	COMA-15A 5/5A	-	CT001AW	2	2	COMA-15A 5/5A	-			
0.4	CT003AW	5	5	COMA-15A 5/5A	-	CT002AW	3	3	COMA-15A 5/5A	-			
0.75	CT004AW	5	10	COMA-15A 10/5A	-	CT003AW	5	5	COMA-15A 5/5A	-			
1.5	CT005AW	5	15	COMA-15A 15/5A	-	CT004AW	5	10	COMA-15A 10/5A	-			
2.2	CT006AW	5	20	COMA-15A 20/5A	-	CT004AW	5	10	COMA-15A 10/5A	-			
3.7	CT007AW	5	30	COMA-15A 30/5A	-	CT005AW	5	15	COMA-15A 15/5A	-			
5.5	X525AA042	5	50	COM-15-26 50/5A	3	CT006AW	5	20	COMA-15A 20/5A	-			
7.5	X525AA042	5	50	COM-15-26 50/5A	3	CT007AW	5	30	COMA-15A 30/5A	-			

COMA-15A type: Totally molded current transformer with primary winding Construction of current transformer (CT) COM-15-26 type: Totally molded current transformer, throughhole type

Install the current transformer (CT) on the output side of the inverter.

■ DC Reactor for Power Factor Improvement and Harmonics Suppression

The DC reactor is available for improvement of the power factor of the inverter, ensuring power line impedance, and control of higher harmonics.

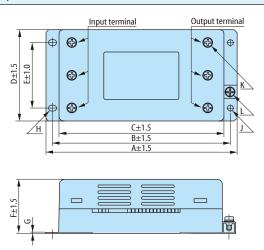

Unit:mm

	Applicable	Specifi	cation	Model											Connection	Maiabt	
	capacity	Current	L	No.	W	W1	D	D1	D2	D3	Н	H1	H2	G	Terminal	(kg)	Insulation
	(kW)	(A)	(mH)	Y220DA											Termina	(kg)	
	0.2	1.0	29.7	032	52	35	40	32	20	22	65	-	300	dia.4	M4	0.3	В
	0.4	2.0	14.8	033	52	35	40	32	20	22	75	-	300	dia.4	M4	0.4	В
	0.75	3.75	9.72	034	52	35	50	42	25	27	85	-	300	dia.4	M4	0.6	В
200V	1.5	7.5	4.83	035	74	50	45	37	ı	1	120	145	-	dia.5	M5	1.0	В
Series	2.2	11.0	3.41	036	74	50	45	37	-	-	120	145	-	dia.5	M5	1.1	В
	3.7	18.5	2.13	037	90	60	62	52	-	-	140	170	-	dia.5	M5	2.0	В
	5.5	28.0	1.47	038	90	60	62	52	-	-	140	170	-	dia.5	M5	2.4	В
	7.5	38.0	1.11	039	100	80	95	80	-	-	140	170	-	5.5×7	M5	3.5	В
	0.2	0.5	116	002	52	35	40	32	20	22	65	-	300	dia.4	M4	0.3	В
	0.4	1.0	59.3	003	52	35	40	32	20	22	75	-	300	dia.4	M4	0.4	В
	0.75	1.88	38.9	004	52	35	50	42	25	27	85	-	300	dia.4	M4	0.6	В
400V	1.5	3.75	19.3	005	59	40	60	47	30	35	100	-	300	dia.4	M4	0.9	В
Series	2.2	5.5	13.7	006	74	50	45	37	-	-	120	140	-	dia.5	M5	1.1	В
	3.7	9.25	8.52	007	74	50	70	62	-	-	120	145	-	dia.5	M5	1.8	В
	5.5	14.0	5.87	008	90	60	62	52	-	-	140	165	-	dia.5	M5	1.5	В
	7.5	19.0	4.46	009	100	80	95	80	-	-	140	165	-	5.5×7	M5	3.5	В

■ AC Reactor for Power Factor Improvement and Harmonics Suppression

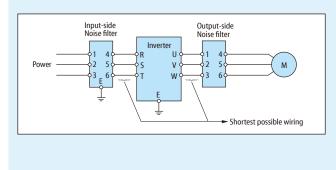
The AC reactor is available for improvement of the power factor of the inverter, ensuring proper power line impedance, and control of higher harmonics.

Note: The AC reactor is for 3-phase input.

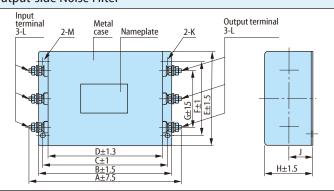

Unit:mm

	Applicable c	apacity (kW)	Specifi	Specification												Weight	
	3-Phase	1-Phase	Current (A)	L (mH)	Model No. Y220DA	W	DI	D2	H1	H2	Α	В	G	L	T	(kg)	Insulation
	0.2, 0.4	0.2	2.1	5.8	053	87	26	23	95	-	50	38	4	310	M4	1.0	В
	0.75	0.4	4.0	3.1	054	87	26	23	95	-	50	38	4	310	M4	1.1	В
200V	1.5	0.75	8.0	1.6	055	90	33	30	100	120	55	48	4	-	M4	1.6	В
Series	2.2	-	11	1.2	056	113	35	30	116	140	55	43	4	-	M4	2.1	В
Series	3.7	1.5/2.2	17	0.7	057	113	35	30	116	140	55	43	4	-	M5	2.4	В
	5.5	-	24	0.5	058	146	35	35	147	180	80	50	5	-	M5	3.9	F
	7.5	-	33	0.4	059	150	35	35	150	185	80	50	5	-	M6	4.4	F
	0.2, 0.4		1.2	22	080	87	26	23	95	-	50	38	4	310	M4	1.0	В
	0.75		2.1	12	081	90	26	23	96	-	50	38	4	310	M4	1.1	В
400V	1.5		4.0	6.5	082	90	33	30	100	-	55	48	4	310	M4	1.7	В
	2.2	-	5.5	4.6	083	113	33	30	115	-	55	43	4	310	M4	2.5	В
Series	3.7		9.0	2.9	084	113	35	30	115	140	55	43	4	-	M4	2.8	В
	5.5		13	2.0	085	153	35	35	145	175	80	50	5	-	M4	4.2	В
	7.5		17	1.5	086	162	37	35	145	175	80	50	5	-	M5	4.4	В

■ Noise Filter


Voltage Class	Applicable Motor		Input side		Output side				
voltage Class	(kW)	Model No.	Model No. Type		Model No.	Type	Weight (kg)		
	0.2, 0.4	X480AC289	NF3010A-VZ		X480AC163	CC3005C-P			
	0.75, 1.5	A400AC209	INF3010A-VZ	0.5	X480AC164	CC3010C-P	1		
3-phase	2.2	X480AC290	NF3020A-VZ	0.5	X480AC165	CC3015C-P			
200V	3.7	A460AC290	INF3UZUA-VZ		X480AC166	CC3020C-P	1.5		
	5.5	X480AC291	NF3030A-VZ	0.7	X480AC167	CC3030C-P	1.5		
	7.5	X480AC292	NF3040A-VZ	1.3	X480AC168	CC3045C-P	2.5		
	0.2, 1.5	X480AC296	NF3010C-VZ		X480AC163	CC3005C-P			
3-phase	2.2, 3.7	A460AC290	INFSUTUC-VZ	0.5	X480AC164	CC3010C-P	1		
400V	5.5	X480AC297	NF3020C-VZ	0.5	X480AC165	CC3015C-P			
	7.5	A400AC297	INF3UZUC-VZ		X480AC166	CC3020C-P	1.5		
	0.2, 0.4	X480AC289	NF3010A-VZ		X480AC163	CC3005C-P			
1-Phase	0.75	A40UAC209	INF3010A-VZ	0.5	X480AC164	CC3010C-P	1		
200V	1.5	X480AC290	NF3020A-VZ		X480AC165	CC3015C-P			
	2.2	X480AC291	NF3030A-VZ	0.7	X480AC166	CC3020C-P	1.5		

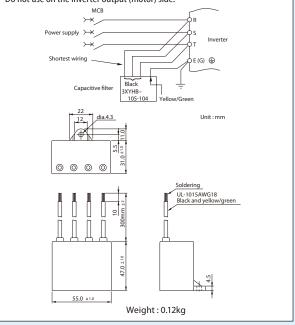
Input-side Noise Filter



Input side					Dimens	sions (l	Jnit: m	m)			
Model No.	Α	В	C	D	E	F	G	Н	J	K	L
X480AC289	128	118	108	63	43						
X480AC290	120	110	100	03	45	42	1.0			M4	
X480AC291	145	135	125	70	50			4546			١
X480AC292	179	167	155	90	70	54	1.6	4.5 X 6	Ø4.5	M5	M4
X480AC296	120	110	100	-	42	42	1.0				
X480AC297	128	118	108	63	43	42	1.0			M4	

- Connect the input-side filter between the power supply and inverter input terminal, and the output-side filter between the inverter output terminal and motor. Make the connection cable as short as possible.
- ${\it 2.} \quad {\it Use grounding cable as thick as possible. Correctly ground the equipment.}\\$
- 3. The input and output cables of the filter should be sufficiently separated.
- 4. Do not connect the input-side filter to the inverter output (motor) side.

Output-side Noise Filter



Output side						Dime	nsior	ıs (Ur	it: mı	n)		
Model No.	Α	В	C	D	Ε	F	G	Н	J	K	L	М
X480AC163												
X480AC164	147	140	125	110	95	70	50	50	25	Ø4.5	M4	R2.25 length 6
X480AC165												
X480AC166	167	160	145	130	110	80	60	70	35	Ø5.5	M5	R2.75 length 7
X480AC167	215	200	185	170	120	90	70	70	35	Ø5.5	M5	R2.75 length 7
X480AC168	255	230	215	200	140	110	80	80	40	Ø6.5	М6	R3.25 length 8

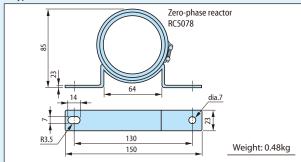
Capacitive filter (XY filter) Type: X480AC185

Model No. X480AC185, Type: 3XYHB-105-104 Applicable to all models for HF-430NEO: rated voltage 500VAC [Method of connection]

- (1) Connect it directly to the inverter input (power supply) terminal. Make the connection line as short as possible.
- (2) Ensure correct grounding. (Grounding resistance: 100Ω or less)
- (3) Do not use on the inverter output (motor) side.

■ Zero-phase Reactor (Inductive Filter)

Unit:mm


Zero-phase reactor

Weight: 1.38kg

Common to 200 V and 400 V classes, as well as input and output sides

· 3.7 kW or less

Model No. X480AC188
Type RC5078

Winding turns	More than 3 times (4T)
Qty used	1 pc
Winding	

Method of connection

5.5 kW or more

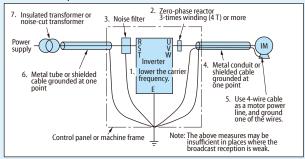
Туре

Model No. X480AC192

RC9129

7514 long slot

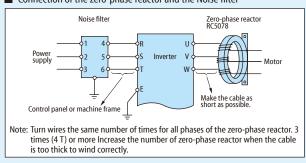
1. It can be used on both input (power supply) side and output (motor) side of the inverter.


35

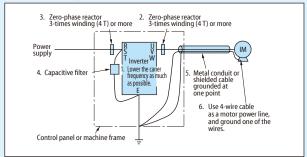
- Wind the cables of the three phases respectively on the input or output side more than three times (4 turns) in the same direction. If cables are too thick to wind more than three times (4 turns), arrange two or more zero-phase reactors to reduce the number of winding turns.
- 3. Make the gap between the cable and the inside of the core as small as possible.

■ When AM Radio Picks Up Noise

1. When noise level is high

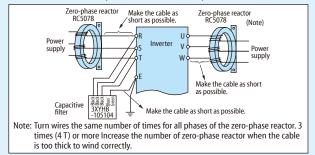

Take possible measures among the following in the order of 1 to 7. Each measure will improve noise reduction.

Corrective measures

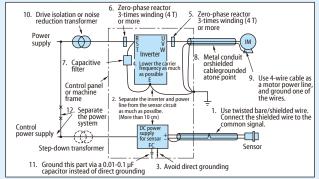

- Lower the carrier frequency as much as possible. Up to approx. 10 kHz when lownoise operation is necessary.
- 2. Install a zero-phase reactor on the output side of the inverter. (Type: RC9129)
- 3. Install a Noise filter on the input side of the inverter.
- 4. Connect the inverter and motor with a metal conduit or shielded cable.
- 5. Use 4-wire cable as a motor power line, and ground one of the wires.
- 6. Connect the inverter and power with a metal conduit or shielded cable.
- Install a drive isolation or noise reduction transformer for the power supply. The transformer capacity differs according to the inverter capacity and voltage.

■ Connection of the zero-phase reactor and the Noise filter

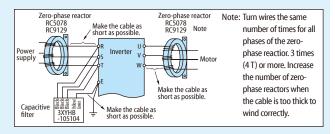
2. When noise level is low


Take possible measures among the following in the order of 1 to 6. Each measure will improve noise reduction.

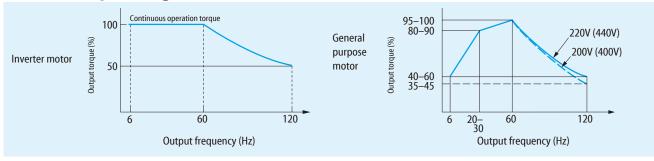
Corrective measures


- Lower the carrier trequency as much as possible. Up to approx. 10 kHz when lownoise operaton is necessary.
- Install a zero-phase reactor on the output side of the inverter. (Type: RC5078, RC9129)
- Install a zero-phase reactor on the input side the inverter. (Type: RC5078, RC9129)
- 4. Install a capacitive filter on the input side of the inverter. (Type: 3XYHB-105104)
- 5. Connect the inverter and motor with a metal conduit or shielded cable.
- 6. Use 4-wire cable as a motor power line, and ground one of the wires.

■ Connection of the zero-phase reactor and the capacitive filter


Measures to Take When Proximity Switch/photoelectric Switch, etc. Malfunction

Take possible measures among the following in the order of 1 to 12. Each measure will improve noise reduction.



- Corrective measures
- Use twisted pair/shielded wire as a sensor signal line, and connect the shielded wire to common.
- Separate the inverter and power line from the sensor circuit as much as possible. (More than 10 cm desirable)
- 3. Remove the grounding wire when the power supply for the sensor is grounded.
- Lower the carrier frequency as much as possible. Up to approx. 10 kHz when lownoise operation is necessary.

- Install a zero-phase reactor on the output side of the inverter. (Type: RC5078, RC9129)
- 6. Install an LC filter on the input side of the inverter. (Type: FS)
- Install a capacitive filter on the input side of the inverter. (Type: 3XYHB-105104)
- 8. Use a metal conduit or shielded cable for power supply wiring.
- 9. Use 4-wire cable as a motor power line, and ground one of the wires.
- 10. Install a drive isolation or noise reduction transformer for the inverter power supply
- 11. Ground the power supply for the sensor via a 0.01-0.1 \rightarrow (630V 0.1 μ F)
- 12. Separate the inverter power supply from the sensor power supply system.
- Connection of the reactors and the capacitive filter

Motor Operating Characteristics

■ Motor Temperature Rise

When a general-purpose motor is used in variable-speed operation with an inverter, the temperature rise of the motor will be slightly greater than in cases where commercial power is used. The causes are shown below:

Influence of output waveform

Unlike commercial power, the output waveform of an inverter is not a perfect sine wave, and contains higher harmonics. Therefore, the motor loss increases and the temperature is slightly higher.

Reduction in the motor cooling effect

Motors are cooled by the fan on the motor itself. When the motor speed is reduced by an inverter, the cooling effect will decrease.

Therefore, lower the load torque or use an inverter motor to control temperature rise when the frequency is below the frequency of commercial power.

Precautions for Application of Inverter

Power supply

- 1. When the inverter is connected directly to a large-capacity power supply (especially in a 400 V line), excessively large peak will flow in, breaking the inverter unit. In such a case, install an AC reactor (option) on the input side of the inverter unit.
- 2. Install an AC reactor in the following cases as well.
 - 1) There is a possibility of surge voltage generated in the power supply system: When surge energy flows into the inverter, OV tripping may result.
 - 2) When a large-capacity thyristor Leonard or other phase control units are installed
- 3. When the inverter is operated by a private power generator, secure a sufficiently large generation capacity for the inverter kVA in consideration of the influence of higher harmonic current on the generator.

Installation

- 1. Do not install the inverter in places with poor environmental conditions subjected to dust, oil mist, corrosive gas, or inflammable gas.
- 2. In places where there is suspended matter in the air, install the inverter inside a "closed-type" panel to prevent entry of suspended matter. Determine the cooling method and dimensions of the panel so that the ambient temperature around the inverter will be lower than the allowable temperature.
- 3. Vertically install the inverter on a wall. Do not install it on wood or other inflammable products.

Handling

- 1. Do not connect the output terminal UVW of the inverter to the power supply; otherwise the inverter will be broken. Carefully check the wiring for correct arrangement before turning on the power.
- 2. It takes some time for the internal capacitors to discharge completely after the power is turned off. Check that the charge lamp on the printed circuit board is OFF before inspection.

Operation

- 1. Do not start and stop the inverter frequently by means of an electromagnetic contactor (MC) installed on the input side of the inverter; otherwise failure of the inverter will result.
- 2. When more than one motor is operated by one inverter, select the inverter capacity so that 1.1 times the total rated current of the motors will not exceed the rated output current of the inverter.
- 3. When an error occurs, the protective function is activated and the inverter trips and stops operation. In that case, motors will not stop immediately. When emergency stop is desired, use mechanical brakes as well.
- 4. The acceleration time of the motor is subject to the inertial moment of the motor and load, motor torque, and load torque.
 - 1) When the acceleration time setting is too short, the stall prevention function is activated, and the setting time is elongated automatically. For stable acceleration and deceleration, set longer time so that the stall prevention function will not be activated.
 - 2) When the deceleration time is too short, the stall prevention function is activated or OV tripping will result. Set longer deceleration time or install a braking unit/braking resistor.

When Operating 400 V Class 3-Phase Induction Motor

When the inverter is used to drive the 3-phase induction motor (general-purpose motor), a high carrier frequency type inverter (e.g. IGBT) requiring high input voltage (more than 400 V) is necessary. When the wiring distance is long, the withstand voltage of the motor must be taken into consideration. Contact us in such cases.

■ Life of Major Parts

The electrolytic capacitor, cooling fan, and other parts used for inverters are consumables. Their life substantially depends on the operating condition of inverters. When replacement of the cooling fan is necessary, contact our dealer or service center.

The inverter described in this brochure is used for variable-speed operation of 3-phase induction motors for general industry use.

A CAUTION

- ▼This product is designed and manufactured for use in industrial applications.
 - When this product is applied to the following applications that have a significant impact on the human, and public functions (nuclear power, aerospace, public transportation, medical instrument and related applications), contact our agency at each time.
- ▼Our products are manufactured under stringent quality control. However, install a safety device on the equipment side in order to prevent serious accidents or loss when our products are applied to equipment that may cause serious accidents or loss due to failure or malfunction.
- **▼**Do not use the inverter for any load other than 3-phase induction motors.
- ▼When an explosion-proof motor is selected, pay attention to the installation environment, because the inverter is not an explosion-proof type.
- ▼Carefully read the "Operation Manual" before use for correct operation. Read the manual carefully also for long-term storage.
- ▼Electrical work is necessary for installation of the inverter. Leave the electric work to specialists.

The cautions to special motor application

<Pole change motor>

When controlling a pole-change motor with the inverter, select the inverter with current rating higher than the maximum current of the motor.

After stopping the motor, please change poles of the motor.

When poles of the motor is changed during the motor running, the alram of overvoltage or overcurrent occurs.

<Motor with the brake>

The power supply for the brake must be certainly connected to the primary side of an inverter.

The inverter must be "OFF" when the brake is "ON" (the motor is stopped).

<Single-phase motor>

The inverter is not suitable to operate a single phase motor.

If the inverter is used with a single phase motor, there's a possibility of capacitor damage, phase-splitting, or even fire hazard.

Selecting the Capacity (Model) of the Inverter

Selection

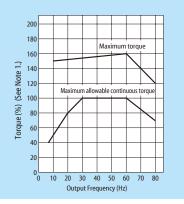
Capacity

Refer to the applicable motor capacities listed in the standard specifications. When driving a high-pole motor, special motor, or multiple motors in parallel, select such an inverter that the sum of the motor rated current multiplied by 1.05 to 1.1 is less than the inverter's rated output current value.

Acceleration/Deceleration Times

The actual acceleration and deceleration times of a motor driven by an inverter are determined by the torque and moment of inertia of the load, and can be calculated by the following equations.

The acceleration and deceleration times of an inverter can be set individually. In any case, however, they should be set longer than their respective values determined by the following equations.


Acceleration time	$ta = \frac{(J_M + J_L) \times \Delta N}{9.56 \times (T_M + T_L)} (sec)$
Deceleration time	$ta = \frac{(J_M + J_L) \times \Delta N}{9.56 \times (T_B + T_L)} (sec)$
Conditions	JM: Moment of inertia of motor (kg·m²) JL: Moment of inertia of load (kg·m²) (converted into value on motor shaft) ΔN: Difference in rotating speed between before and after acceleration or deceleration (r/min) TL: Load torque (N·m) TM: Motor rated torque x 1.2-1.3 (N·m) [V/f control] Motor rated torque x 1.5 (N·m) [Vector operation control] TB: Motor rated torque x 0.2 (N·m) When a braking resistor or a braking resistor unit is used: Motor rated torque x 0.8-1.0 (N·m)

Allowable Torque Characteristics

When the 3-phase induction motor is combined with an inverter to perform variable speed operation, the motor temperature rises slightly higher than it normally does during commercial power supply operation. This is because the inverter output voltage has a sinusoidal (approximate) PWM waveform. In addition, the cooling becomes less effective at low speed, so the torque must be reduced according to the frequency.

When constant-torque operation must be performed at low speeds, use an AF motor designed specifically for use with inverters.

Note: 1. 100% of torque refers to the amount of torque that the motor produces when it is running at a 60Hz-synchronized speed. The starting torque is smaller in this case than that required when power is supplied from a commercial power line. So, the characteristics of the machine to be operated need to be taken into consideration.

The maximum allowable torque at 50Hz can be calculated approximately by multiplying the maximum allowable torque at a base frequency of 60Hz by 0.8.

Starting Characteristics

When a motor is driven by an inverter, its operation is restricted by the inverter's overload current rating, so the starting characteristic is different from those obtained from commercial power supply operation.

Although the starting torque is smaller with an inverter than with the commercial power supply, a high starting torque can be produced at low speeds by adjusting the V/f pattern torque boost amount or by employing vector control. (200% in sensorless control mode, though this rate varies with the motor characteristics). When a larger starting torque is necessary, select an inverter with a larger capacity and examine the possibility of increasing the motor capacity.

Harmonic Current and Influence to Power Supply

 Harmonics are defined as sinusoidal waves that is multiple freguency of commercial power (base frequency: 50Hz or 60Hz). Commercial power including harmonics has a distorted waveform.

Some electrical and electronic devices produce distorted waves in their rectifying and smoothing circuits on the input side. Harmonics produced by a device influence other electrical equipment and facilities in some cases (for example, overheating of phase advancing capacitors and reactors).

Measures for Suppressing Higher Harmonics when Driving with Inverter

Connecting a Reactor

Harmonic current leakage from the inverter may be suppressed by connecting an input AC reactor (ACL) to the input side of the inverter or DC reactor (DCL) to the DC section of the inverter.

- Input AC Reactor (ACL)
 Used to improve the input power factor, reduce the harmonics, and suppress external surge on the inverter power source side.
- DC Reactor (DCL)
 DC reactor is more efficient on improving power factor for inverter power source side. Use input AC reactor together, for suppressing external surges.

Note: Refer to section on Peripheral Equipments, or Options for measures on high frequency noise when using inverters.

1. Warranty Policy on Inverter

Warranty period	The warranty shall be 18 months from date of shipment or 12 months after intial operation, whichever is shorter.
Warranty condition	In the event that any problem or damage to the Product arises during the "Warranty Period" from defects in the Product whenever the Product is properly installed and combined with the Buyer's equipment or machines maintained as specified in the maintenance manual, and properly operated under the conditions described in the catalog or as otherwise agreed upon in writing between the Seller and the Buyer or its customers; the Seller will provide, at its sole discretion, appropriate repair or replacement of the Product without charge at a designated facility, except as stipulated in the "Warranty Exclusions" as described below. However, if the Product is installed or integrated into the Buyer's equipment or machines, the Seller shall not reimburse the cost of: removal or re-installation of the Product or other incidental costs related thereto, any lost opportunity, any profit loss or other incidental or consequential losses or damages incurred by the Buyer or its customers.
Warranty exclusion	 Not withstanding the above warranty, the warranty as set forth herein shall not apply to any problem or damage to the Product that is caused by: Installation, connection, combination or integration of the Product in or to the other equipment or machine that rendered by any person or entity other than the Seller; Insufficient maintenance or improper operation by the Buyer or its customers such that the Product is not maintained in accordance with the maintenance manual provided or designated by the Seller; Improper use or operation of the Product by the Buyer or its customers that is not informed to the Seller, including, without limitation, the Buyer's or its customers' operation of the Product not in conformity with the specifications; Any problem or damage on any equipment or machine to which the Product is installed, connected or combined or any specifications particular to the Buyer or its customers; Any changes, modifications, improvements or alterations to the Product or those functions that are rendered on the Product by any person or entity other than the Seller; Any parts in the Product that are supplied or designated by the Buyer or its customers; Earthquake, fire, flood, salt air, gas, lightning, acts of God or any other reasons beyond the control of the Seller; Normal wear and tear, or deterioration of the Product's parts, such as the cooling fan bearings; Any other troubles, problems or damage to the Product that are not attributable to the Seller.
Others	The Seller will not be responsibility for the installation and removal of the inverter. Any inverter transportation cost shall be born by both Seller and Buyer.

2. Warranty Policy on Repaired and Returned Products

Warranty period	The warranty shall be 6 months from date of repair and shipment.
Warranty condition	Warranty on repaired Product will apply only on the replacement parts used in the repair done or authorized by the Seller. All other aspects conform to the Warranty Conditions described in item 1.
Warranty exclusion	Please refer to Warranty Exclusions described in item 1.
Others	Please refer to Others decribed in item 1.

Worldwide Locations

U.S.A

Sumitomo Machinery Corporation of America (SMA)

4200 Holland Blvd. Chesapeake, VA 23323, U.S.A. TEL (1)757-485-3355 FAX (1)757-485-7490

SM Cyclo of Canada, Ltd. (SMC)

1453 Cornwall Road, Oakville, Canada ON L6J 7T5 TEL (1)905-469-1050 FAX (1)905-469-1055

Mexico

SM Cyclo de Mexico, S.A. de C.V. (SMME)

Av. Desarrollo 541, Col. Finsa, Guadalupe, Nuevo León, México, CP67132 TEL (52)81-8144-5130 FAX (52)81-8144-5130

Brazil

Sumitomo Industrias Pesadas do Brasil Ltda. (SHIB)

Rodovia do Acucar (SP-075) Km 26 Itu, Sao Paulo, Brasil TEL (55)11-4886-1000 FAX (55)11-4886-1000

SM-Cyclo de Chile Ltda. (SMCH)

Camino Lo Echevers 550, Bodegas 5 y 6, Quilicura, Región Metropolitana, Chile TEL (56)2-892-7000 FAX (56)2-892-7001

Argentina

SM-Cyclo de Argentina S.A. (SMAR) Ing Delpini 2230, B1615KGB Grand Bourg,

Malvinas Argentinas, Buenos Aires, Argentina TEL (54)3327-45-4095 FAX (54)3327-45-4099

Guatemala

SM Cyclo de Guatemala Ensambladora, Ltda. (SMGT)

Parque Industrial Unisur, 0 Calle B 19-50 Zona 3, Bodega D-1 Delta Bárcenas en Villa Nueva, Guatemala TEL (502)6648-0500 FAX (502)6631-9171

Colombia

SM Cyclo Colombia, S.A.S. (SMCO)

Parque Industrial Celta, Km 7.0 Autopista Medellín, Costado Occidental, Funza, Cundinamarca, Colombia TEL (57)1-300-0673

Peru

SM Cyclo de Perú, S.A.C (SMPE)

Jr. Monte Rosa 255, Oficina 702, Lima, Santiago de Surco, Perú TEL (51)1-713-0342 FAX (51)1-715-0223

Germany

Sumitomo (SHI) Cyclo Drive Germany GmbH

Cyclostraße 92, 85229 Markt Indersdorf, Germany TEL (49)8136-66-0 FAX (49)8136-5771

Austria

Sumitomo (SHI) Cyclo Drive Germany GmbH

SCG Branch Austria Office

Gruentalerstraße 30A, 4020 Linz, Austria TEL (43)732-330958 FAX (43)732-331978

Belgium

Hansen Industrial Transmissions NV (HIT)

Leonardo da Vincilaan 1, Edegem, Belgium

France

SM-Cyclo France SAS (SMFR)

8 Avenue Christian Doppler, 77700 Serris, France TEL (33)164171717 FAX (33)164171718

Italy

SM-Cyclo Italy Srl (SMIT)

Via dell' Artigianato 23, 20010 Cornaredo (MI), Italy TEL (39)293-481101 FAX (39)293-481103

Spain

SM-Cyclo Iberia, S.L.U. (SMIB)

C/Gran Vía Nº 63 Bis, Planta 1, Departamento 1B 48011 Bilbao–Vizcaya, Spain TEL (34)9448-05389 FAX (34)9448-01550

United Kingdom

SM-Cyclo UK Ltd. (SMUK)

Unit 29, Bergen Way, Sutton Fields Industrial Estate, Kingston upon Hull, HU7 0YQ, East Yorkshire, United Kingdom TEL (44)1482-790340 FAX (44)1482-790321

Turkey

SM Cyclo Turkey Güç Aktarım Sis. Tic. Ltd. Sti. (SMTR)

Barbaros Mh. Çiğdem Sk. Ağaoğlu, Office Mrk. No:1 Kat:4 D.18 Ataşehir, İstanbul, Turkey TEL (90)216-250-6069 FAX (90)216-250-5556

India

Sumi-Cyclo Drive India Private Limited (SDI)

Gat No. 186, Raisoni Industrial Park, Alandi Markal Road, Fulgaon-Pune, Maharashtra, India TEL (91)96-0774-5353

China

Sumitomo (SHI) Cyclo Drive Shanghai, Ltd. (SCS)

11F, SMEG Plaza, No. 1386 Hongqiao Road, Changning District, Shanghai, China 200336 TEL (86)21-3462-7877 FAX (86)21-3462-7922

Hong Kong

SM-Cyclo of Hong Kong Co., Ltd. (SMHK)

Room 19, 28th Floor, Metropole Square, No.2 On Yiu Street, Shatin, New Territories, Hong Kong TEL (852)2460-1881 FAX (852)2460-1882

Korea

Sumitomo (SHI) Cyclo Drive Korea, Ltd. (SCK)

Room #913, Royal Bldg, Saemunan-ro 5 gil 19, Jongro-gu, Seoul, Korea 03173

FAX (82)2-730-0156 TEL (82)2-730-0151

Taiwan

Tatung SM-Cyclo Co., Ltd. (TSC)

22 Chungshan N. Road 3rd., Sec. Taipei, Taiwan 104, ROC

TEL (886)2-2595-7275 FAX (886)2-2595-5594

Singapore

Sumitomo (SHI) Cyclo Drive Asia Pacific Pte. Ltd. (SCA)

15 Kwong Min Road, Singapore 628718 TEL (65)6591-7800 FAX (65)6863-4238

Philippines

Sumitomo (SHI) Cyclo Drive Asia Pacific Pte. Ltd. Philippines Branch Office (SMPH)

C4 & C5 Buildings Granville Industrial Complex, Carmona, Cavite 4116, Philippines

TEL (63)2-584-4921 FAX (63)2-584-4922

Vietnam

SM-Cyclo (Vietnam) Co., Ltd. (SMVN)

Factory 2B, Lot K1-2-5, Road No. 2-3-5A, Le Minh Xuan Industrial Park, Binh Chanh Dist., HCMC, Vietnam TEL (84)8-3766-3709 FAX (84)8-3766-3710

Malaysia

SM-Cyclo (Malaysia) Sdn. Bhd. (SMMA) No.7C, Jalan Anggerik Mokara 31/56, Kota Kemuning, Seksyen 31, 40460 Shah Alam, Selangor Darul Ehsan,

TEL (60)3-5121-0455 FAX (60)3-5121-0578

Indonesia

PT. SM-Cyclo Indonesia (SMID)

Jalan Sungkai Blok F 25 No. 09 K, Delta Silicon III, Lippo Cikarang, Bekasi 17530, Indonesia TEL (62)21-2961-2100 FAX (62)21-2961-2211

Thailand

SM-Cyclo (Thailand) Co., Ltd. (SMTH)

195 Empire Tower, Unit 2103-4, 21st Floor, South Sathorn Road, Yannawa, Sathorn, Bangkok 10120, Thailand TEL (66)2670-0998 FAX (66)2670-0999

Australia

Sumitomo (SHI) Hansen Australia Pty. Ltd.

181 Power St, Glendenning, NSW 2761, Australia TEL (61)2-9208-3000 FAX (61)2-9208-3050

Sumitomo Heavy Industries, Ltd. (SHI)

ThinkPark Tower, 1-1 Osaki 2-chome, Shinagawa-ku, Tokyo 141-6025, Japan TEL (81)3-6737-2511 FAX (81)3-6866-5160

Specifications, dimensions, and other items are subject to change without prior notice.

