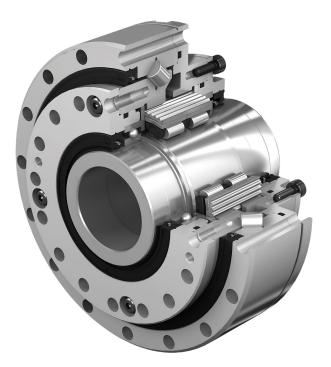

Sumitomo Drive Technologies

Motion Control Drives **ECYCLO**[®] High Precision Gearboxes

ECY Series

No.F1001E-2

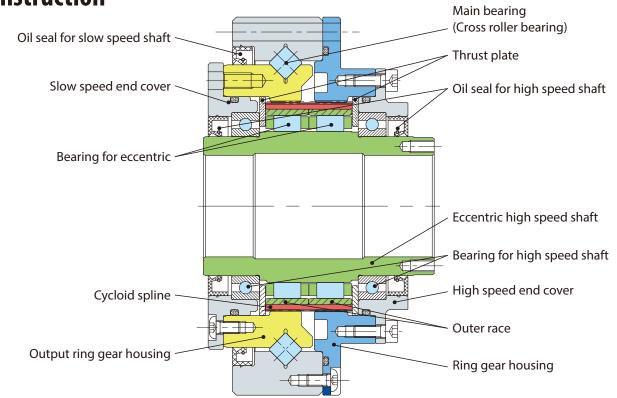

Table of Contents

1.	Construction	2
2.	Features	3
3.	Nomenclature	4
4.	Line up	4
5.	Speed Ratio and Rotation Direction	on 4
6.	Standard Specifications	5
7.	Operating Principle	5
8.	Rating	6
9.	Engineering Data	7
	9-1. Angular transmission error	
	9-2. No Load Friction Torque on Output	ut Shaft
	9-3. Stiffness and Hysteresis	
	9-4. No Load Running Torque	
	9-5. Efficiency	
10.	9-5. Efficiency Main Bearings	10
	-	
11.	Main Bearings	12
11. 12.	Main Bearings High Speed Shaft Radial Load and Axial Load .	12 14
11. 12.	Main Bearings High Speed Shaft Radial Load and Axial Load . Selection	12 14
11. 12.	Main Bearings High Speed Shaft Radial Load and Axial Load . Selection Notice for Designing	12 14 16
11. 12.	Main Bearings High Speed Shaft Radial Load and Axial Load . Selection Notice for Designing 13-1. Assembly Method	12 14 16
11. 12.	Main Bearings High Speed Shaft Radial Load and Axial Load . Selection Notice for Designing 13-1. Assembly Method 13-2. Bolt Tightening Torque and Allowable Transmissi	12 14 16
11. 12. 13.	Main Bearings High Speed Shaft Radial Load and Axial Load. Selection Notice for Designing 13-1. Assembly Method 13-2. Bolt Tightening Torque and Allowable Transmissi 13-3. Assembly Procedure	12 14 16 ion Torque
11. 12. 13.	Main Bearings High Speed Shaft Radial Load and Axial Load. Selection Notice for Designing 13-1. Assembly Method 13-2. Bolt Tightening Torque and Allowable Transmissi 13-3. Assembly Procedure 13-4. Lubrication	12 14 16 ion Torque
11. 12. 13.	Main Bearings High Speed Shaft Radial Load and Axial Load . Selection Notice for Designing 13-1. Assembly Method 13-2. Bolt Tightening Torque and Allowable Transmiss 13-3. Assembly Procedure 13-4. Lubrication Outline Drawing	12 14 16 ion Torque

Strain Wave Gear System × CYCLO Drive Gear

E CYCLO[®] High Precision Gearboxes

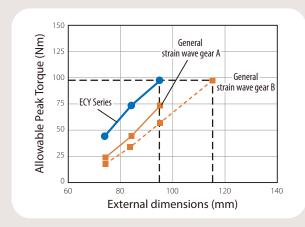
ECY Series



CYCLO[®] Drives were created and developed by Sumitomo. This unique reducer structure by using teeth trochoid tooth profile* is being used in industrial robots and transfer devices all over the world.

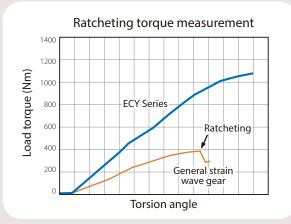
The ECY Series, which was developed as a compact reducer for non-backlash applications, fuses the strain wave gear with the engagement theory of the CYCLO Drives, thus realizing high rigidity and a compact structure that were unavailable until now.

* Epitrochoid parallel curves

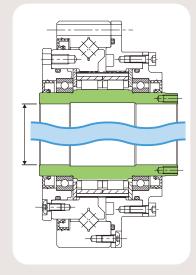


1. Construction

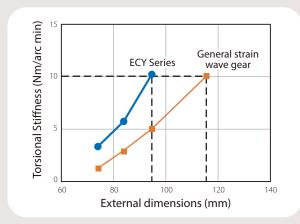
Figure 1-1 Construction


2. Features

Compact, and high torque


It has high torque compared to that of a general wave gear (equivalent size), contributing to make the device more compact.

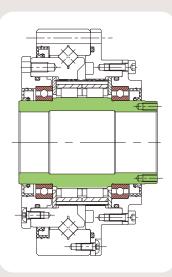
Ratcheting resistance (safety in the event of an overload)


The structure suppressing ratcheting (situation where teeth do not engage smoothly) realizes high safety under overload.

Large diameter hollow of high speed shaft

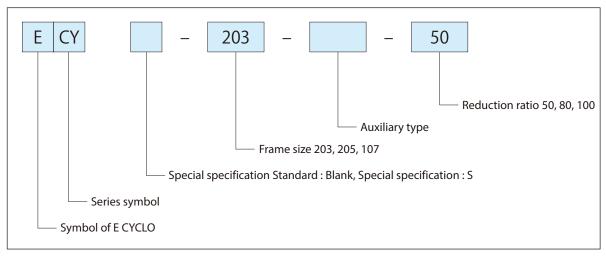
The diameter of the hollow shaft of the high speed shaft has been increased, permitting effective utilization of the space between the wall of the hollow shaft and your cables, shafts, and so on.

High rigidity


The torsional stiffness is larger than that of a general strain wave gear (equivalent size).Thus it can increase the device's strength and reduce vibration, etc.

Reasons for above-average strength

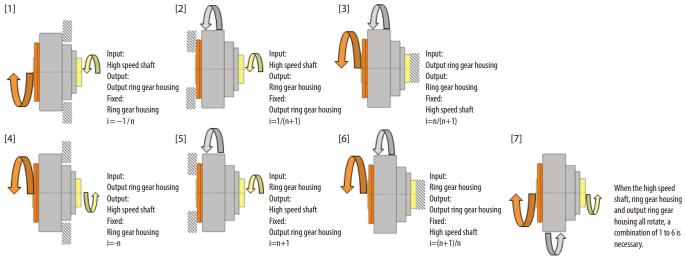
	Examples of general strain wave gear	ECY Series	
External gear profile	Cup type/Hat type	Cylindrical type	
Tooth contact in the tooth trace direction	Partly gear meshing (30-50%)	Fully gear meshing (≒100%)	
Elliptical bearing structure	Ball bearing	Roller bearing	


The structure differs from a general strain wave gear, realizing high strength.

Reduction of assembly work performed by a user

Because the high speed shaft is supported by the reducer and the grease is packed in a sealed structure, it is easy to mount the shaft on the device or on the motor.

3. Nomenclature



4. Line up

Table 4-1		• : Production	possible range	
Frame size	Reduction ratio			
Frame size	50	80	100	
203				
205				
107				

5. Speed Ratio and Rotation Direction

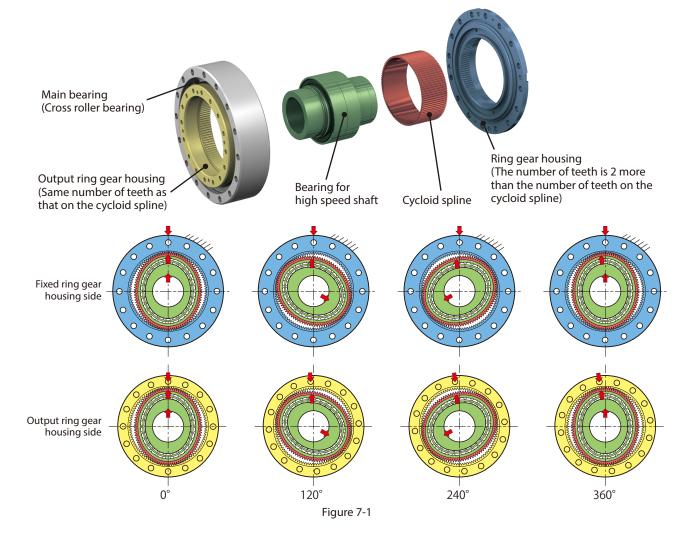
The rotation direction and speed ratio are as illustrated in the figure below depending on the fixed, input, and output locations.

• i : Speed ratio (= [Output speed]/[Input speed]) *"-" indicates opposite direction.

+ and - of the speed ratio i indicate that the input and output are in the same and opposite directions, respectively.

• n : Reduction ratio.

6. Standard Specifications


Table 6-1

Lubrication	Grease lubrication Grease is filled before shipment from the factory. For details, see 1 3-4 "Lubrication".
Ambient conditions	Ambient temperature -10 to $+40^{\circ}$ C (Start failure may occur depending on the speed and torque of the motor in use, so consult us if the reducer will be used at about -10 to 0° C.)
Ambient humidity	85% or less. No condensation.
Altitude	1000m or lower
Atmosphere	 Free from corrosive gas, volatile gas or steam. Dust-free and well-ventilated area.
Mounting location	 Indoor (Free from dust, water, other liquids) Mounting in conditions other than the above requires adherence to special specifications. Please consult with us. Mount in a location that enables easy operation, such as inspection and maintenance. Mount on a sufficiently rigid member.
Mounting direction	Mounting direction is free.
Painting	Paintless * Although the packing material used has good anti-rust performance, carry out rustproofing of each part separately after unpacking the product and in case of long-term storage.

7. Operating Principle

As a principle rule, the ECY Series consists of 4 parts.

- The bearing for eccentric deforms the cycloid spline into an elliptical shape.
- The major axis of the cycloid spline that was deformed into an elliptical shape engages the fixed ring gear housing and the output ring gear housing.
- When the fixed ring gear housing is fixed and the bearing used for the eccentric body is turned 1 rotation in the clockwise direction, the cycloid spline will rotate in the counterclockwise direction by an amount corresponding exactly to the difference in the number of teeth, while the elastic deformation is changing.
- This amount of rotation is taken off at the output ring gear housing.

8. Rating

Table 8-1 Rating table

Frame	Reduction	Rated output torgue	Allowable peak torque at acceleration		Allowable maximum momentary torque	Allowable maximum input	Allowable average input	Equivalent on input shaft Moment of inertia/ GD ²		Mass
size	ratio	(Upper row/N-m) (Lower row/kgf-m)	and decelaration (Upper row/N-m) (Lower row/kgf-m)	(Upper row/N-m) (Lower row/kgf-m)	(Upper row/N-m) (Lower row/kgf-m)	speed (r/min)	speed (r/min)	(X10 ^{-₄} kg • m²)	(X10 ^{-₄} kgf⋅m²)	(kg)
	50	21	44	34	91					
	50	2.1	4.5	3.5	9.3					
203	80	29	56	35	113	8500	2500	0.13	0.52	0.9
205	80	3.0	5.7	3.6	11.5	8300	2300	0.15	0.52	0.9
	100	31	70	51	143					
	100	3.2	7.1	5.2	14.6					
	50	33	73	44	127					
		3.4	7.4	4.5	12.9					
205	80	44	96	61	165	7300	2500	0.30	1.20	1.2
205	80	4.5	9.8 6.2 16.8 7300		7300	2500	0.50	1.20	1.2	
	100	52	107	64	191					
	100	5.3	10.9	6.5	19.5					
	50	39	98	55	186					
		4.0	10.0	5.6	19.0					
107	80	63	137	87	255	6500	2000	0.62	2.48	1.6
		6.4	14.0	8.9	26.0	0500	2000	0.02	2.10	1.0
	100	67	157	108	284					
		6.8	16.0	11.0	29.0					

1. Rated torque

The rated torque indicates the allowable output torque at the output flange at an input speed of 2000 r/min.

2. Allowable peak torgue during acceleration and deceleration

This is the peak torque allowed during normal acceleration and deceleration.

3. Allowable maximum momentary torque

This is the allowable value of the impact torque that is applied instantaneously to the output shaft by an emergency shutdown or an external shock etc.

Indicates the value when 10⁴ deflection cycles are applied to the cycloid spline throughout the entire life of the product.

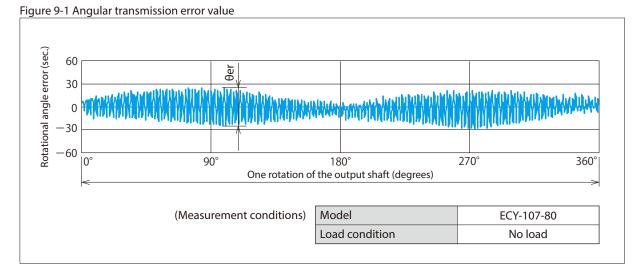
- N : Allowable speed under an impact torque (r/min)
- 104 $N = \frac{10^4}{2 \cdot \frac{n}{60} \cdot t}$ n : Input speed when an impact torque is applied (r/min) T : Time during which an impact torque is applied (s)
- 4. Allowable maximum input speed and allowable average input speed

Although use is possible within the range of the maximum allowable input speed, the operation cycle is limited by the allowable average input speed.

When a high duty ratio is used, there will be a risk of the E CYCLO overheating, causing it to break. To prevent this, when using the E CYCLO, ensure that its surface temperature is no higher than 40°C above the ambient temperature, or is no higher than an absolute value of 60°C, whichever is lower, as a general rule.

5. Moment of inertia, GD²

This indicates the value of the moment of inertia and GD² on input shaft (high speed shaft) of each model.


When converting these values to inertia (kgf \cdot m \cdot s²), divide by g (9.8 m / sec²) for moment of inertia, and by 4g (4 x 9.8 m/s²) for GD².

9. Engineering Data

9-1. Angular transmission error

Angular transmission error: This is the difference between the theoretical output rotational angle and the actual output rotational angle when an arbitrary rotational angle is applied to the input under a no-load condition.

 θ er(Angular transmission error) = $\frac{\theta$ in (Arbitrary input rotational angle) i (Reduction ratio) - θ out (Actual output rotational output)

(arc sec)

Table 9-1 Angular transmission error

Reduction ratio	Frame size			
	203	205	107	
50	±45	±45	±45	
80	±45	±45	±45	
100	±45	±45	±45	

Note : The values indicate the specification value. Arc sec indicates the angle "second."

9-2. No Load Friction Torque on Output Shaft

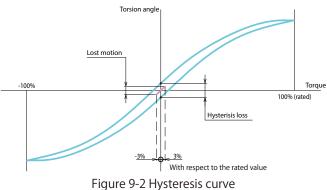
No load friction torque: This indicates the torque required to start rotation from the output side of reducer without load.

Table 9-2 No load friction torque on output shaft (N·m)

Reduction ratio	Frame size				
Reduction ratio	203	205	107		
50	20	21	22		
80	31	34	40		
100	33	45	51		

Note : 1. Indicates the representative value after run-in.

2. Lubrication: Our standard grease


9-3. Stiffness and Hysteresis

Hysteresis curve: This is the relationship between the load and the output side torsion angle when the high speed shaft is fixed, the rated torque applied to the output side, and the load subsequently removed.

Lost motion: Torsion angle under the load of the rating torque $\times \pm 3\%$

Hysteresis loss: The difference between the torsion angles at zero torque along the hysteresis curve

Stiffness: Inclination of the straight line joining 2 points on the hysteresis curve, in the region between arbitrary torque values

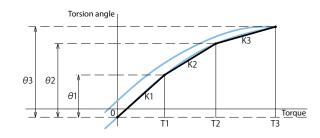


Figure 9-3 Classification of stiffness

Table 9-3 Lost motion	

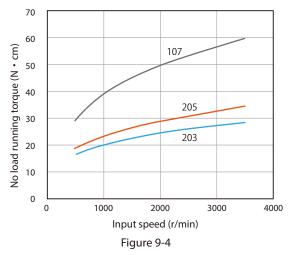
Table 9-3 Lost motion(arc min)						
Reduction ratio	Frame size					
Reduction ratio	203	205	107			
50	1.0	1.0	1.0			
80	1.0	1.0	1.0			
100	1.0	1.0	1.0			

Note : The values indicate the specification value. Arc min indicates the angle "minute."

Table 9-4 Hysteresis loss(arc min)						
Reduction ratio						
Reduction ratio	203	205	107			
50	2.0	2.0	2.0			
80	2.0	2.0	1.5			
100	2.0	2.0	1.5			

Note : The values indicate the specification value. Arc min indicates the angle "minute."

Table 9-5 Stiffness


Reduction ratio	Symbol	Unit	Frame size			
Reduction ratio	Symbol	Unit	203	205	107	
Т	1	N∙m	3.9	7.0	14	
T2		N∙m	12	25	48	
	T3	N∙m	34	56	98	
	K1	N•m/arc min	3.3	5.3	10.1	
	NI	X10⁴N•m/rad	1.1	1.8	3.5	
	K2	N•m/arc min	3.5	5.5	10.3	
50	κz	X10⁴N•m/rad	1.2	1.9	3.5	
50	K3	N•m/arc min	4.4	7.1	12.0	
	K3	X10⁴N•m/rad	1.5	2.4	4.1	
	θ1	arc min	1.2	1.3	1.4	
	θ2	arc min	3.5	4.6	4.7	
	θ3	arc min	8.5	9.0	8.9	
	T3	N∙m	43	74	137	
	K1	N•m/arc min	3.9	6.6	11.6	
		X10⁴N•m/rad	1.3	2.3	4.0	
	K2	N•m/arc min	4.0	7.4	12.5	
80		X10⁴N•m/rad	1.4	2.5	4.3	
80	K3	N•m/arc min	5.0	8.5	14.4	
	КЭ	X10⁴N•m/rad	1.7	2.9	5.0	
	θ1	arc min	1.0	1.1	1.2	
	θ2	arc min	3.0	3.5	3.9	
	θ3	arc min	9.2	9.3	10.1	
	T3	N∙m	54	82	157	
	K1	N•m/arc min	3.8	7.7	10.7	
	KI.	X10⁴N•m/rad	1.3	2.6	3.7	
ĺ	K2	N•m/arc min	4.3	8.2	11.0	
100	ĸΖ	X10⁴N•m/rad	1.5	2.8	3.8	
100	K3	N•m/arc min	5.4	9.5	15.9	
	кð	X10⁴N•m/rad	1.9	3.3	5.5	
	θ1	arc min	1.0	0.9	1.3	
	θ2	arc min	2.9	3.1	4.4	
	θ3	arc min	10.7	9.1	11.3	

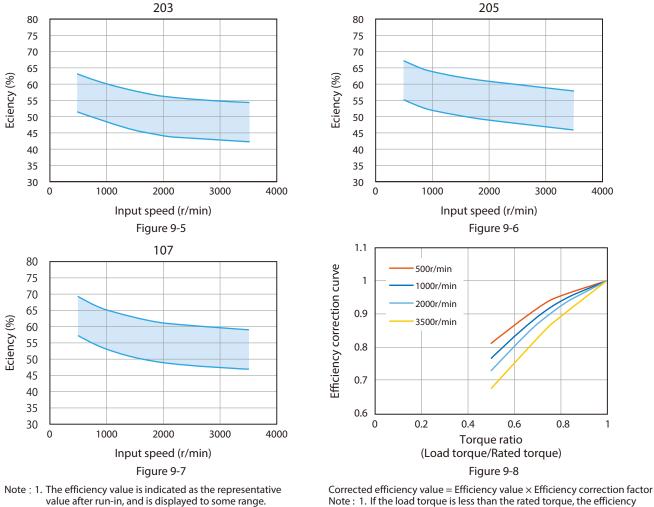
Note : arc min indicates the angle "minute."

The values indicate the representative value.

9-4. No Load Running Torque

No load running torque: This means the torque on the input side required to rotate the reducer without a load.

Note :1. The value indicates the representative value after run-in. 2. Lubrication: Our standard grease


3. Temperature of the E CYCLO's surface: Approx, 40°C

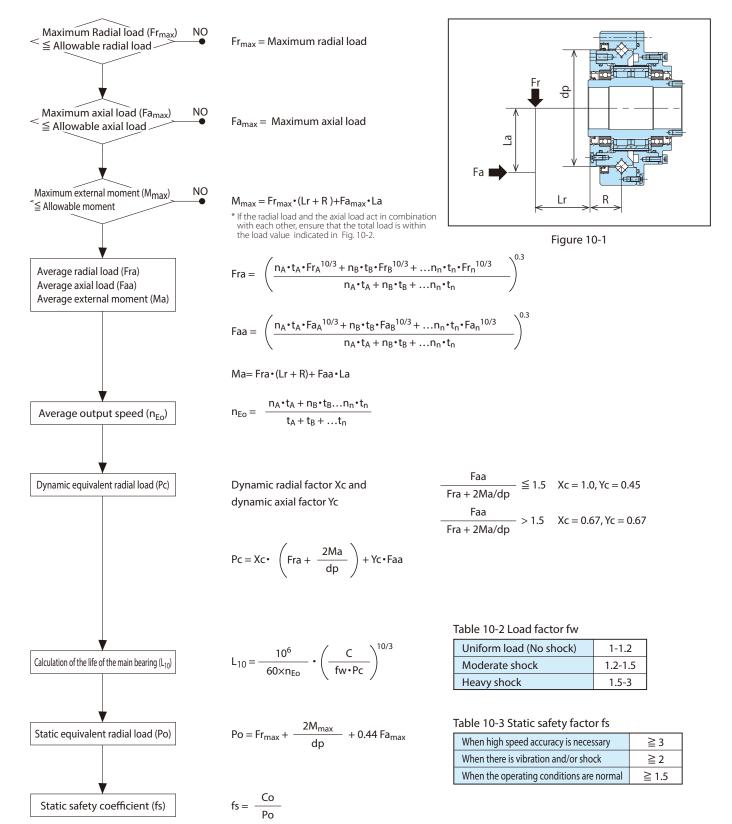
9-5. Efficiency

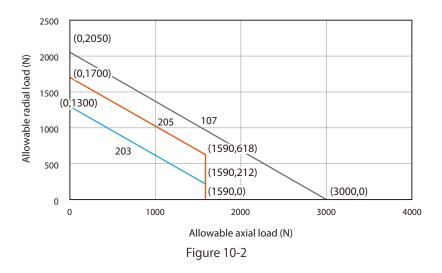
Efficiency: This is the ratio of the actual input torque to the theoretical input torque when the rated torque is applied to the output side. The efficiency varies according to the input speed, load torque, grease temperature, reduction ratio, etc. The figure shows the values of efficiency with respect to the input speed at the rated torque when the temperature on the casing is

approximately 40°C.

When using the E CYCLO under a load torque other than the rated torque, correct the efficiency using the efficiency correction curve shown in the Figure 9-8.

2. Lubrication: Our standard grease


- 3. Temperature on the casing : Approx, 40°C


value will be smaller. 2. If the torque ratio is 1.0 or more, the efficiency correction factor will be 1.0.

10. Main Bearing

Table10-1 Main bearing specifications

	Pitch circle diameter of roller	Offset	Basic dynamic rated load	Basic static rated load	Allowable moment	Allowable radial load	Allowable axial load	Moment (representa	stiffness ative value)
Frame size	dp	R	С	C0	N∙m	N	N	x10⁴N•m/rad	N•m/arc min
	m	m	Ν	Ν	N•M	IN	IN		N•m/arc min
203	0.0547	0.01875	9000	18300	105	1300	1590	10.1	29.4
205	0.0630	0.01940	12900	19700	159	1700	1590	14.5	42.2
107	0.0720	0.01985	18100	30400	219	2050	3000	20.3	59.1

11. High Speed Shaft Radial Load and Axial Load

When mounting a gear or pulley on a high speed shaft, use the reducer within a range where the radial load and axial load do not exceed the allowable values. Check the radial load and axial load of the high speed shaft according to the following formulas ([1] to [3]).

.. . .

[1] Radial load Pr

$$P_{r} = \frac{TI}{R} \leq \frac{P_{ro}}{L_{f} \cdot C_{f} \cdot F_{s1}} \quad (N) \tag{\mathbf{thm}}$$

[2] Axial load Pa

$$P_a \leq \frac{P_{ao}}{C_f \cdot F_{s1}} \quad (N) \tag{$\pi 2$}$$

[3] When a radial load and axial load coexist

$$\left(\frac{P_{\mathbf{r}} \cdot \mathbf{L}_{\mathbf{f}}}{P_{\mathbf{ro}}} + \frac{P_{\mathbf{a}}}{P_{\mathbf{ao}}}\right) \cdot C_{\mathbf{f}} \cdot F_{\mathbf{s}1} \leq 1 \qquad (\mathbf{I} \mathbf{c})$$

P _r : Actual radial load (N)	
TI : Actual transmission torque on high speed shaft of reduce	r (N • m)
R : Pitch circle radius of sprocket, gear, pulley, etc. (m)	
P _{ro} : Allowable radial load (N)	(Table 11-1)
P _a : Actual axial load (N)	
P _{ao} : Allowable axial load (N)	(Table 11-2)
L _f : Load position factor	(Table 11-3)
C _f : Coupling factor	(Table 11-4)

(Table 11-5)

Table 11-1 Allowable radial load P_{ro}(N)

Frame size		Input speed r/min								
Frame size	4000	3000	2500	2000	1750	1500	1000	750	600	
203	198	218	232	250	261	275	315	347	373	
205	218	240	255	275	288	303	346	381	411	
107	238	262	278	300	314	330	378	416	448	

F_{s1}: Shock factor

Table 11-2 Allowable axial load P_{ao}(N)

Frame size			Input speed r/min						
Frame size	4000	3000	2500	2000	1750	1500	1000	750	600
203	169	191	207	228	242	259	308	349	385
205	186	210	228	250	266	284	339	384	424
107	212	240	260	283	303	324	387	439	483

Note : 1. The allowable radial load and the allowable axial load at an input speed of less than 600 r/min are the same as the values at 600 r/min. 2. Complement the values of the radial load and axial load at an input speed that is not shown in the table, by using the following formula.

Allowable radial load

$$P_{rN} = P_{r2000} \cdot \left(\frac{2000}{N}\right)^{1/3}$$

 P_{rN} : Allowable radial load for input speed N

Pr2000 : Allowable radial load at an input speed of 2000 r/min

Allowable axial load

$$\mathsf{P}_{\mathsf{a}\mathsf{N}} = \mathsf{P}_{\mathsf{a}2000} \bullet \left(\frac{2000}{\mathsf{N}}\right)^{0.44}$$

PaN : Allowable axial load at input speed N

Pa2000 : Allowable axial load at an input speed of 2000 r/min

Table 11-3 Load position factor Lf

L	Frame size					
(mm)	203	205	107			
5	1.01	0.99	0.97			
10	1.13	1.10	1.07			
15	1.25	1.21	1.18			
20	1.37	1.32	1.28			
25	1.49	1.43	1.39			
30	1.61	1.54	1.49			
35	1.73	1.65	1.60			
40	-	-	1.70			
$L (mm) when L_f = 1(mm)$	4.6	5.5	6.6			

Note : Using linear complementation, calculate the load position factor L_f at load position L which is not shown in the table.

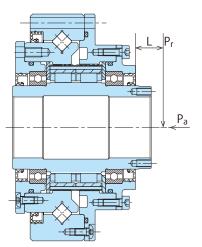


Figure 11-1 High speed shaft load position

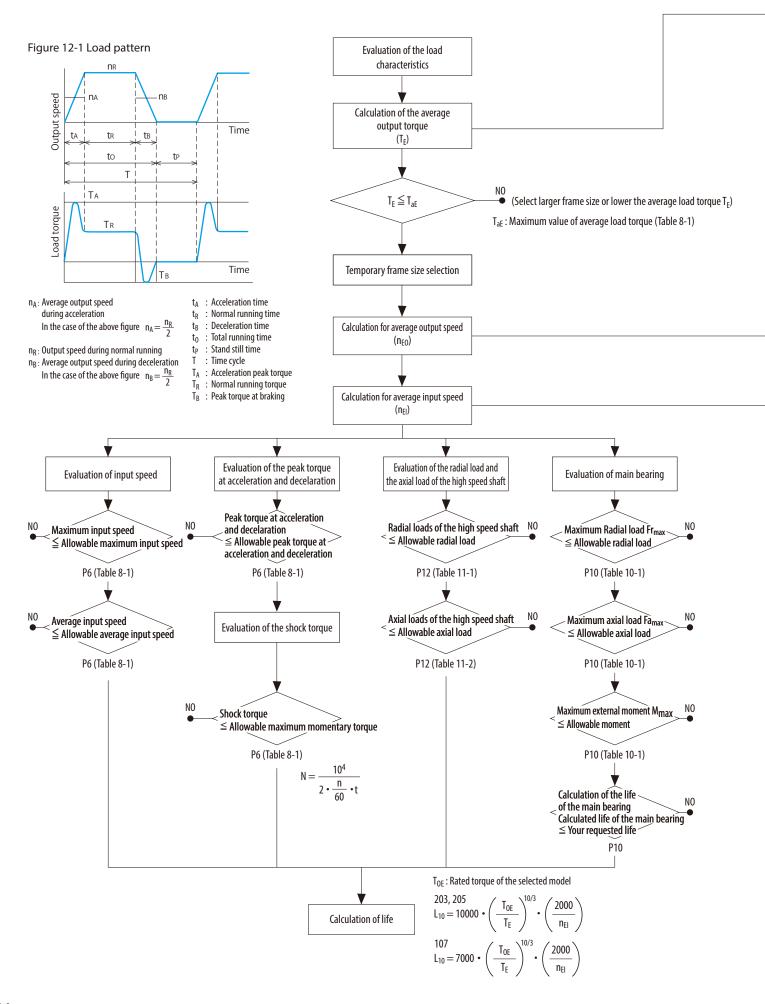

Table 11-4 Coupling factor C_f

Table 11-5 Shock factor	F
-------------------------	---

Load connection factor	C _f
Chain	1
Gear	1.25
Timing belt	1.25
V belt	1.5

Table 11-5 Shock factor F _{s1}						
Load Classification	F _{s1}					
Uniform load (No shock)	1					
Moderate shock	1–1.2					
Heavy shock	1.4–1.6					

12. Selection

Calculation for the running pattern in the figure 12-1

$$-\bigcirc \text{ Average load torque } \mathsf{T}_{\mathsf{E}} = \left(\frac{\mathsf{t}_{\mathsf{A}} \cdot \mathsf{n}_{\mathsf{A}} \cdot \mathsf{T}_{\mathsf{A}}^{10/3} + \mathsf{t}_{\mathsf{R}} \cdot \mathsf{n}_{\mathsf{R}} \cdot \mathsf{T}_{\mathsf{R}}^{10/3} + \mathsf{t}_{\mathsf{B}} \cdot \mathsf{n}_{\mathsf{B}} \cdot \mathsf{T}_{\mathsf{B}}^{10/3}}{\mathsf{t}_{\mathsf{A}} \cdot \mathsf{n}_{\mathsf{A}} + \mathsf{t}_{\mathsf{R}} \cdot \mathsf{n}_{\mathsf{R}} + \mathsf{t}_{\mathsf{B}} \cdot \mathsf{n}_{\mathsf{B}}}\right)^{0.3}$$

- O Average output speed
$$n_{E0} = \frac{t_A \cdot n_A + t_R \cdot n_R + t_B \cdot n_B}{T}$$

The longest operation cycle is 10min.

Selection Example

Make confirmation assuming , ECY-107-50 for the following specification.

(specification)	T _A : Peak torque at acceleration and decelaration	80N•m	t _A : Acceleration time	0.3s
	T _R : Normal running torque	30N•m	t _R : Normal running time	3.0s
	T _B : Peak torque at braking	60N•m	t _B : Deceleration time	0.3s
	Shock torque :	160N•m	t _P : Stand still time	3.6s
	n_{A} : Average output speed during acceleration/deceleration	25r/min	to : Total running time	3.6s
	n _R : Output speed during normal running	50r/min	T : Time cycle	7.2s
	n_B : Average output speed during deceleration	25r/min	Radial loads of the high speed shaft :	100N
	Necessary life	10000h	Maximum external moment :	150N•m
			Maximum radial load :	500N

When using the E CYCLO, almost no shock is assumed.

(Calculation) Average load torque
$$T_E = \left(\frac{0.3 \cdot 25 \cdot 80^{10/3} + 3 \cdot 50 \cdot 30^{10/3} + 0.3 \cdot 25 \cdot 60^{10/3}}{0.3 \cdot 25 + 3 \cdot 50 + 0.3 \cdot 25}\right)^{0.3} = 40(N \cdot m)$$

From Table 8-1, the maximum value of the average load torque of ECY-107-50 is $T_{aE} = 55 (N \cdot m)$. $\Rightarrow 40 (N \cdot m) 55 (N \cdot m)$, consequently ECY-107 is provisionally selected.

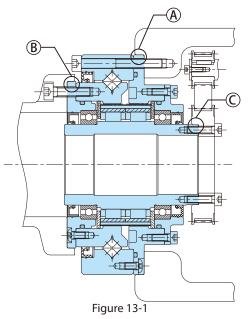
Maximum input speed $n_{max}\,{=}\,50{\,{\scriptstyle\bullet}}\,50\,{=}\,2500$ (r/min)

Average output speed
$$n_{E0} = \frac{0.3 \cdot 25 + 3 \cdot 50 + 0.3 \cdot 25}{7.2} = 22.9 \text{ (r/min)}$$

Average input speed $n_{EI} = 22.9 \cdot 50 = 1146$ (r/min)

\bigcirc Check of maximum input speed 2500(r/min) ≤ 6500(r/min)	P6 (Table 8-1)
\bigcirc Check of average input speed 1146(r/min) \leq 2000(r/min)	P6 (Table 8-1)
\bigcirc Check of peak torque at acceleration/deceleration 80(N • m) ≤ 98(N • m)	P6 (Table 8-1)
\bigcirc Check of shock torque 160(N • m) ≤ 186(N • m)	P6 (Table 8-1)
\bigcirc Check of radial loads of the high speed shaft 100(N) \leq 361(N) (L _f , C _f , F _{s1} = 1)	P12 (Table 11-1)
\bigcirc Check of allowable moment 150(N • m) ≤ 219(N • m)	P10 (Table 10-1)
\bigcirc Check of allowable radial loads 500(N) ≤ 2050(N)	P10 (Table 10-1)
\bigcirc Check of main bearing(f _w = 1.2) 36334(h) \ge 10000(h)	P10 (Table 10-2)
\bigcirc Confirmation of the static safety coefficient 6.5 \ge 1.5	P10 (Table 10-3)
○ Check of life	

From Table 8-1, the rated torque of ECY-107-50 is $T_{OE} = 39 (N \cdot m)$.


Life
$$L_{10} = 7000 \cdot \left(\frac{39}{40}\right)^{10/3} \cdot \left(\frac{2000}{1146}\right) = 11433(h) \ge 10000(h)$$

ECY-107-50 is selected based on the above consideration.

13. Notice for Designing

13-1. Assembly Method

Use spigot \bigcirc when assembling the input parts (pulleys and gears) Use spigot B for the assembly of the reducer output side, and use spigot A for assembly of the casing.

13-2. Bolt Tightening Torque and Allowable Transmission Torque

Allowable transmission torque by bolt

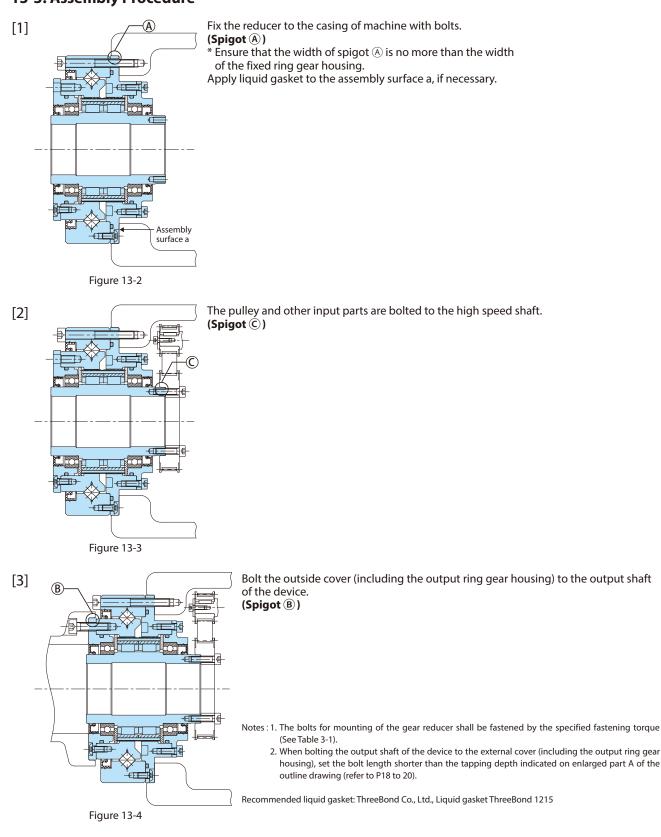
Table 13 -1 shows the number, size and tightening torque of bolts when fastening the output part and input part of the E CYCLO with bolts.

At this time, it is possible to transmit the allowable maximum momentary torque shown in Table 13 -1.

Table 13-1

			Tightening of the output ring gear housing						
Frame size	Number and size of	Bolt PCD	Bolt tighter	ning torque	Allowable transmission torque by bolt				
	bolts	mm	N∙m	kgf∙cm	N∙m	kgf∙cm			
203	16-M3	48.0	1.96	20	163	17			
205	16-M3	55.5	1.96	20	189	19			
107	16-M4	63.0	4.61	47	374	38			

			Tightening of the cross roller						
Frame size	Number and size of	Bolt PCD	Bolt tighter	ning torque	Allowable transmission torque by bolt				
	bolts	mm	N∙m	kgf∙cm	N∙m	kgf∙cm			
203	16-M3	68.0	1.96	20	232	24			
205	16-M3	78.0	1.96	20	266	27			
107	16-M4	87.5	4.61	47	520	53			


			Tightening of the eccentric high speed shaft						
Frame size	Number and size of	Bolt PCD	Bolt tighter	ning torque	Allowable transmission torque by bolt				
	bolts	mm	N∙m	kgf∙cm	N∙m	kgf∙cm			
203	6-M2	22	0.55	5.6	14	1.4			
205	8-M2	24	0.55	5.6	20	2.0			
107	6-M3	30	1.96	20	45	5.0			

• Bolt: Use hexagon socket head bolts of strength class 12.9 of JIS B 1176.

Measure to prevent loosening of bolts: Use adhesive (Loctite 262, etc.) or a conical spring washer (JIS B 1252 Type 2). Also, in order to prevent damage to the seating face of the bolts when tightening the E CYCLO, it is recommended that you use a conical spring washer intended for a hexagonal socket head bolt.

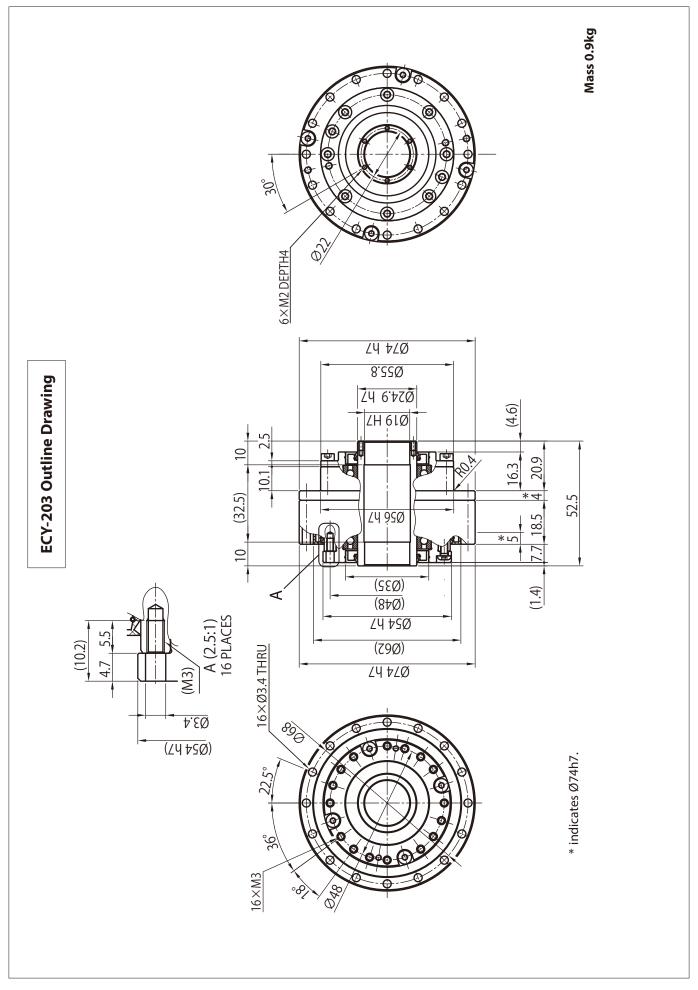
Coefficient of friction: 0.15

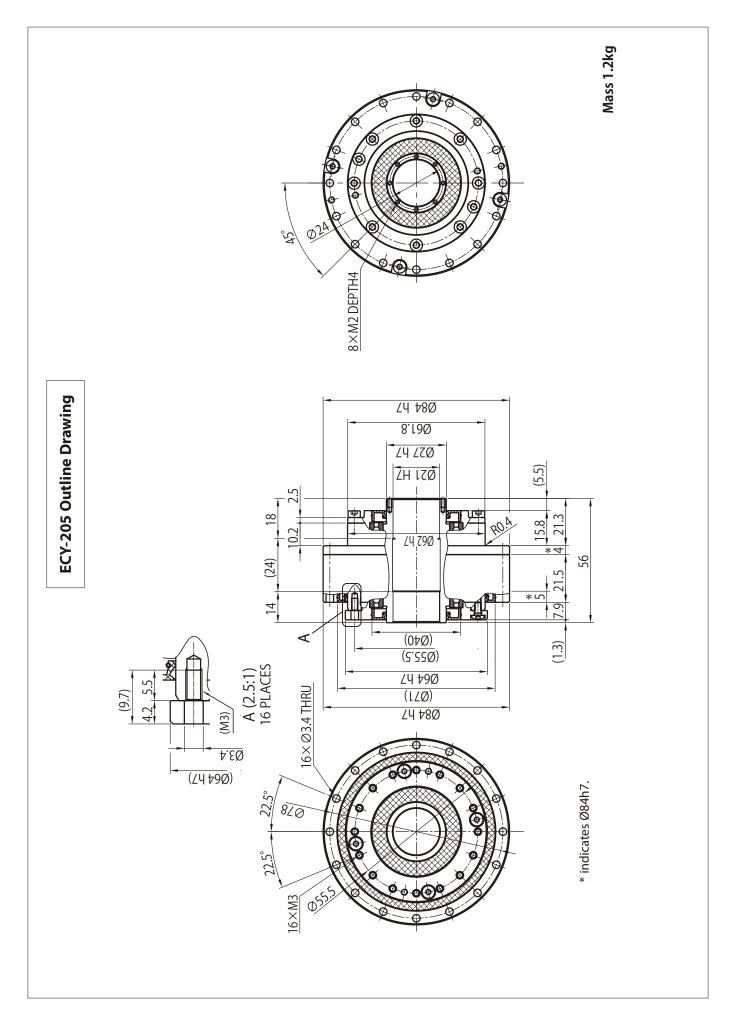
13-3. Assembly Procedure

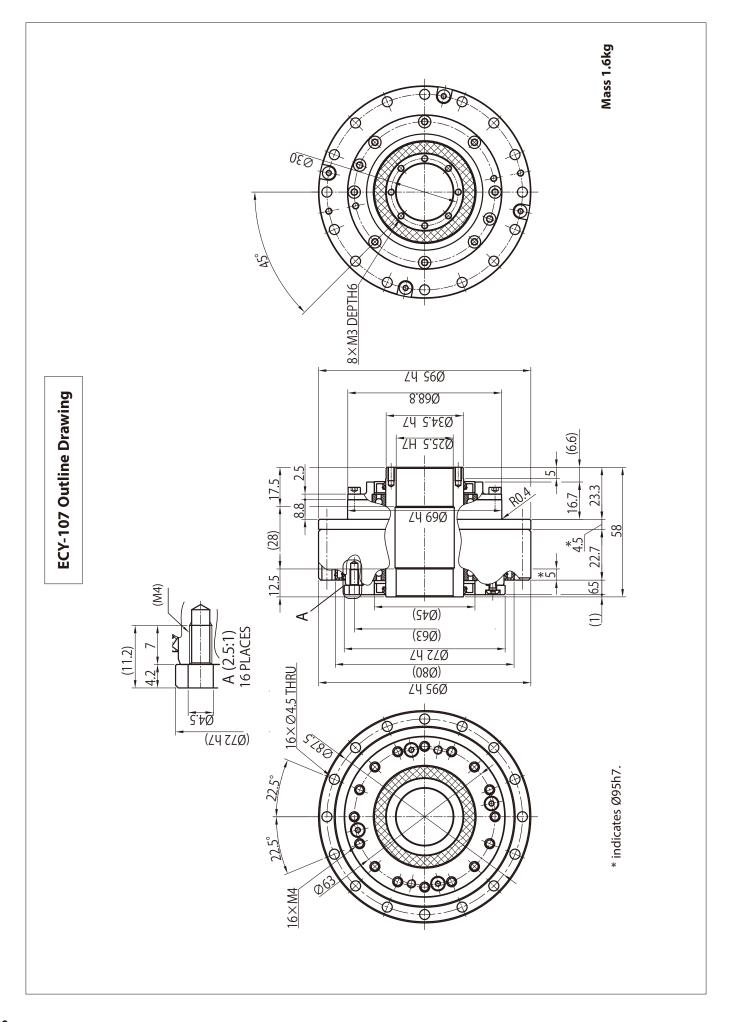
13-4. Lubrication

The E CYCLO is shipped after Nippeco's HGO-3 No.00has been sealed. Replace grease every 20,000 hours of operation time or every three to five years.

Table 13-2


Frame size	20)3	205 (Reduction)	ratio 50,80 / 100)	1()7
Frame size	g	mL	g	mL	g	mL
Grease amount	7	8	14 / 10	16/12	16	18


Table 13-3 Grease specifications


Grease name	HGO-3
Base oil	Refined mineral oil
Thickener	Lithium soap
Additive	Extreme pressure additives, etc.
Consistency No.	No.00
Consistency (at 25°C)	400–430
Appearance	Light brown

The specific gravity is assumed to be 0.87 g/mL.

14. Outline Drawing

15. Other

The specification shown in this document is based on our evaluation method. Evaluate the performance and durability in the condition of installation in the drive considering the field usage conditions, etc. and confirm that there is no problem, by yourself, before using this product.

Be sure not to perform disassembly, inspection, repair, and maintenance with disassembly in cases of abnormalities of this product by yourself because they have to be performed by our skilled workers with special jigs and tools and expertise. Note that the specifications and dimensions shown in this document may be changed without notice to customers.

Warranty standard

The scope of warranty of our delivered products is limited only to what we manufactured.

Warranty Period	The warranty period for the Products shall be 18 months after the commencement of delivery or 18 months after the shipment of the Products from the seller's works or 12 months from the Products coming into operation, whether comes first.
Warranty Condition	In the event that any problem or damage to the Product arises during the "Warranty Period" from defects in the Product whenever the Product is properly installed and combined with the Buyer's equipment or machines, maintained as specified in the maintenance manual, and properly operated under the conditions described in the catalog or as otherwise agree upon in writing between the Seller and the Buyer or its customers; the Seller will provide, at its sole discretion, appropriate repair or replacement of the Product without charge at a designted facility, except as stipulated in the "Warranty Exclusions" as described below. However, if the Product is installed or integrated into the Buyer's equipment or machines, the Seller shall not reimburse the cost of : removal or re-installation of the Product or other incidental costs related thereto, any lost opportunity, any profit loss or other incidental or consequential losses or damages incurred by the Buyer or its customers.
Warranty Exclusions	 Notwithstanding the above warranty, the warranty as set forth herein shall not apply to any problem or damage to the Product that is caused by : 1. installation, connection, combination or integration of the Product in or to the other equipment or machine that is rendered by any person or entity other than the Seller ; 2. insufficient maintenance or improper operation by the Buyer or its customers, such that the Product is not maintained in accordance with the maintenance manual provided or designated by the Seller ; 3. improper use or operation of the Product by the Buyer or its customers that is not informed to the Seller, including, without limitation, the Buyer's or its customers, operation of the Product not in conformity with the specifications, or use of lubricating oil in the Product that is not recommended by the Seller ; 4. any problem or damage on any equipment or machine to which the Product is installed, connected or combined or on any specifications particular to the Buyer or its customers ; 5. any changes, modifications, improvements or alterations to the Product or those functions that are rendered on the Product that are supplied or designated by the Buyer or its customers ; 6. any parts in the Product that are supplied or designated by the Buyer or its customers ; 7. earthquake, fire, flood, sea-breeze, gas, thunder, acts of God or any other reasons beyond the control of the Seller ; 8. normal wear and tear, or deterioration of the Product's parts, such as bearings, oil-seals ; 9. any other troubles, problems or damage to the Product's parts, such as bearings, oil-seals ;

Safety Precautions

• Observe the safety rules necessary for the installation location and device in use.

(Ordinance on Industrial Safety and Health, facility's electrical codes, interior wiring code, plant explosion proofing guide, Building Standards Act, etc.)

- Carefully read the maintenance manual before use. When you don't have the maintenance manual, please make sure to contact the nearest agent, distributor, or sales office. Make sure that the maintenance manual is delivered to the customer who actually use the product.
- This product is designed and produced for uses in general industries. Therefore, in the case the product is used for applications which can seriously affect human bodies, human lives, and public facilities (nuclear, aerospace, public transportation, any application related to medical treatment, etc.), consideration is required on all such occasions. Contact our sales office.
- Select the product suitable for your operating environment and purpose.
- If you use the product for any devices for which a breakdown of the product is expected to cause a great loss of human life or facility such as systems for human transport, hoisting equipment, etc., install a protection device in the device side for safety.
- When the unit is used in food processing applications, machines for cleanroom and so on, vulnerable to oil contamination, install an oil pan or other such device to cope with oil leakage due to breakdown or failure;

МЕМО

	IVI	U												

МЕМО

	U																

МЕМО

IVI														

Worldwide Locations

U.S.A

Sumitomo Machinery Corporation of America (SMA)

4200 Holland Blvd. Chesapeake, VA 23323, U.S.A. TEL (1)757-485-3355 FAX (1)757-485-7490

Canada

SM Cyclo of Canada, Ltd. (SMC) 1453 Cornwall Road, Oakville, Canada ON L6J 7T5 TEL (1)905-469-1050 FAX (1)905-469-1055

Mexico

SM Cyclo de Mexico, S.A. de C.V. (SMME) Av. Desarrollo 541, Col. Finsa, Guadalupe, Nuevo León, México, CP67132 TEL (52)81-8144-5130 FAX (52)81-8144-5130

Brazil

Sumitomo Industrias Pesadas do Brasil Ltda. (SHIB)

Rodovia do Acucar (SP-075) Km 26 Itu, Sao Paulo, Brasil TEL (55)11-4886-1000 FAX (55)11-4886-1000

Chile

SM-Cyclo de Chile Ltda. (SMCH) Camino Lo Echevers 550, Bodegas 5 y 6, Quilicura, Región Metropolitana, Chile TEL (56)2-892-7000 FAX (56)2-892-7001

Argentina

SM-Cyclo de Argentina S.A. (SMAR) Ing Delpini 2230, B1615KGB Grand Bourg, Malvinas Argentinas, Buenos Aires, Argentina TEL (54)3327-45-4095 FAX (54)3327-45-4099

Guatemala

SM Cyclo de Guatemala Ensambladora, Ltda. (SMGT)

Parque Industrial Unisur, 0 Calle B 19-50 Zona 3, Bodega D-1 Delta Bárcenas en Villa Nueva, Guatemala TEL (502)6648-0500 FAX (502)6631-9171

Colombia

SM Cyclo Colombia, S.A.S. (SMCO) Parque Industrial Celta, Km 7.0 Autopista Medellín, Costado Occidental, Funza, Cundinamarca, Colombia TEL (57)1-300-0673

Peru

SM Cyclo de Perú, S.A.C (SMPE)

Jr. Monte Rosa 255, Oficina 702, Lima, Santiago de Surco, Perú TEL (51)1-713-0342 FAX (51)1-715-0223

Germany

Sumitomo (SHI) Cyclo Drive Germany GmbH (SCG)

Cyclostraße 92, 85229 Markt Indersdorf, Germany TEL (49)8136-66-0 FAX (49)8136-5771

Austria

Sumitomo (SHI) Cyclo Drive Germany GmbH (SCG) SCG Branch Austria Office

Gruentalerstraße 30A, 4020 Linz, Austria TEL (43)732-330958 FAX (43)732-331978

Belgium

Hansen Industrial Transmissions NV (HIT) Leonardo da Vincilaan 1, Edegem, Belgium TEL (32)34-50-12-11 FAX (32)34-50-12-20

France

 SM-Cyclo France SAS (SMFR)

 8 Avenue Christian Doppler, 77700 Serris, France

 TEL (33)164171717
 FAX (33)164171718

Italy

SM-Cyclo Italy Srl (SMIT) Via dell' Artigianato 23, 20010 Cornaredo (MI), Italy TEL (39)293-481101 FAX (39)293-481103

Spain

SM-Cyclo Iberia, S.L.U. (SMIB) C/Gran Vía N° 63 Bis, Planta 1, Departamento 1B 48011 Bilbao-Vizcaya, Spain TEL (34)9448-05389 FAX (34)9448-01550

United Kingdom

SM-Cyclo UK Ltd. (SMUK) Unit 29, Bergen Way, Sutton Fields Industrial Estate, Kingston upon Hull, HU7 0YQ, East Yorkshire, United Kingdom TEL (44)1482-790340 FAX (44)1482-790321

Turkey

SM Cyclo Turkey Güç Aktarım Sis. Tic. Ltd. Sti. (SMTR)

Barbaros Mh. Çiğdem Sk. Ağaoğlu, Office Mrk. No:1 Kat:4 D.18 Ataşehir, İstanbul, Turkey TEL (90)216-250-6069 FAX (90)216-250-5556

India

Sumi-Cyclo Drive India Private Limited (SDI) Gat No. 186, Raisoni Industrial Park, Alandi Markal Road, Fulgaon-Pune, Maharashtra, India TEL (91)96-0774-5353

China

Sumitomo (SHI) Cyclo Drive Shanghai, Ltd. (SCS)

11F, SMEG Plaza, No. 1386 Hongqiao Road, Changning District, Shanghai, China 200336 TEL (86)21-3462-7877 FAX (86)21-3462-7922

Hong Kong

SM-Cyclo of Hong Kong Co., Ltd. (SMHK) Room 19, 28th Floor, Metropole Square, No.2 On Yiu Street, Shatin, New Territories, Hong Kong TEL (852)2460-1881 FAX (852)2460-1882

Korea

 Sumitomo (SHI) Cyclo Drive Korea, Ltd. (SCK)

 Royal Bldg Room #913, 19, Saemunan-ro 5-gil,

 Jongno-gu, Seoul, 03173, Korea

 TEL (82)2-730-0151

 FAX (82)2-730-0156

Taiwan

Tatung SM-Cyclo Co., Ltd. (TSC) 22 Chungshan N. Road 3rd., Sec. Taipei, Taiwan 104, R.O.C. TEL (886)2-2595-7275 FAX (886)2-2595-5594

Singapore

Sumitomo (SHI) Cyclo Drive Asia Pacific Pte. Ltd. (SCA) 15 Kwong Min Road, Singapore 628718 TEL (65)6591-7800 FAX (65)6863-4238

Philippines

Sumitomo (SHI) Cyclo Drive Asia Pacific Pte. Ltd. Philippines Branch Office (SMPH) C4 & C5 Buildings Granville Industrial Complex, Carmona, Cavite 4116, Philippines TEL (63)2-584-4921 FAX (63)2-584-4922

Vietnam

SM-Cyclo (Vietnam) Co., Ltd. (SMVN) Factory 2B, Lot K1-2-5, Road No. 2-3-5A, Le Minh Xuan Industrial Park, Binh Chanh Dist., HCMC, Vietnam TEL (84)8-3766-3709 FAX (84)8-3766-3710

Malaysia

SM-Cyclo (Malaysia) Sdn. Bhd. (SMMA) No.7C, Jalan Anggerik Mokara 31/56, Kota Kemuning, Seksyen 31, 40460 Shah Alam, Selangor Darul Ehsan, Malaysia

TEL (60)3-5121-0455 FAX (60)3-5121-0578

Indonesia

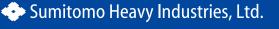
PT. SM-Cyclo Indonesia (SMID) Jalan Sungkai Blok F 25 No. 09 K, Delta Silicon III, Lippo Cikarang, Bekasi 17530, Indonesia

TEL (62)21-2961-2100 FAX (62)21-2961-2211

Thailand

SM-Cyclo (Thailand) Co., Ltd. (SMTH)

195 Empire Tower, Unit 2103-4, 21st Floor, South Sathorn Road, Yannawa, Sathorn, Bangkok 10120, Thailand TEL (66)2670-0998 FAX (66)2670-0999


Australia

Sumitomo (SHI) Hansen Australia Pty. Ltd. (SHAU)

181 Power St, Glendenning, NSW 2761, Australia TEL (61)2-9208-3000 FAX (61)2-9208-3050

Japan

Sumitomo Heavy Industries, Ltd. (SHI) ThinkPark Tower, 1-1 Osaki 2-chome, Shinagawa-ku, Tokyo 141-6025, Japan TEL (81)3-6737-2511 FAX (81)3-6866-5160

Specifications, dimensions, and other items are subject to change without prior notice.

No.F1001E-2.0 EA14 Printed 2022.05

Power Transmission & Controls Group Headquarter ThinkPark Tower, 1-1 Osaki 2-chome, Shinagawa-ku, Tokyo 141-6025, Japan